题目内容

14.如图,∠C=$\frac{π}{2}$,AC=BC,M,N分别是BC、AB的中点,沿直线MN将△BMN折起使点B到达B′,且∠B′MB=$\frac{π}{3}$,则B′A与平面ABC所成角的正切值为(  )
A.$\frac{\sqrt{2}}{5}$B.$\frac{\sqrt{3}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

分析 由题意画出图形,作出B′A在平面ABC上的投影,得到B′A与平面ABC所成角,求解直角三角形得答案.

解答 解:如图:

 由于折叠之前BM与CM都始终垂直于MN,这在折叠之后仍然成立,
∴折叠之后平面B′MN与平面BMN所成的二面角即为∠B′MB=$\frac{π}{3}$,并且B′在底面ACB内的投影点H就在BC上,且恰在BM的中点位置,
连接B′A和AH,设AC=BC=a,
在直角三角形ACH中,AH=$\frac{5}{4}$a,
在直角三角形B′MH中,由于B′M=$\frac{1}{2}$a,∠B′MH=60°,∴B′H=$\frac{\sqrt{3}}{4}$a,
在直角三角形B′AH中,tan∠B′AH=$\frac{B′H}{AH}=\frac{\frac{\sqrt{3}}{4}a}{\frac{5}{4}a}=\frac{\sqrt{3}}{5}$.
故选:B.

点评 本题考查直线与平面所成的角,关键应抓住折叠前与折叠后的变量与不变量,考查了二面角的平面角及直线与平面所成角的概念,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网