题目内容

2.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD中点.

(1)证明:CD⊥平面PAE;
(2)若直线PB与平面ABCD所成角为45°,求二面角A-PD-C的余弦值.

分析 (1)连接AC,推导出CD⊥AE,PA⊥CD,由此能证明CD⊥平面PAE.
(2)过点B作BG∥CD,分别与AE,AD相交于点F,G,连接PF,以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角A-PD-C的余弦值.

解答 证明:(1)连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5,
又AD=5,E是CD得中点,
所以CD⊥AE,
PA⊥平面ABCD,CD?平面ABCD.
所以PA⊥CD,
而PA,AE是平面PAE内的两条相交直线,
所以CD⊥平面PAE.
(2)过点B作BG∥CD,分别与AE,AD相交于点F,G,连接PF,
由CD⊥平面PAE知,BG⊥平面PAE,
则∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.
由PA⊥平面ABCD知,∠PBA即为直线PB与平面ABCD所成的角.
∴∠PBA=45°,∴PA=AB=4,
以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
平面APD的法向量$\overrightarrow{n}$=(1,0,0),
P(0,0,4),D(0,5,0),C(4,3,0),
$\overrightarrow{PD}$=(0,5,-4),$\overrightarrow{PC}$=(4,3,-4),
设平面PDC的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PD}=5y-4z=0}\\{\overrightarrow{m}•\overrightarrow{PC}=4x+3y-4z=0}\end{array}\right.$,取y=4,得$\overrightarrow{m}$=(2,4,5),
设二面角A-PD-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{\sqrt{45}}$=$\frac{2\sqrt{5}}{15}$.
∴二面角A-PD-C的余弦值为$\frac{2\sqrt{5}}{15}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网