题目内容

14.某校高二2班学生每周用于数学学习的时间x(单位:h)与数学成绩y(单位:分)之间有如表数据:
x24152319161120161713
y92799789644783687159
(Ⅰ)求线性回归方程;
(Ⅱ)该班某同学每周用于数学学习的时间为18小时,试预测该生数学成绩.
参考数据:$\overline x=17.4$,$\overline y=74.9$,$\sum_{i=1}^{10}{{x_i}^2=3182}$,$\sum_{i=1}^{10}{{y_i}^2=58375}$,$\sum_{i=1}^{10}{{x_i}{y_i}=13578}$
回归直线方程参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

分析 (Ⅰ)利用已知条件求出回归直线方程的几何量,得到回归直线方程,
(Ⅱ)将x=18代入回归方程,求出y的预报值即可.

解答 解:(Ⅰ)$\hat b=\frac{{\sum_{i=1}^{10}{{x_i}{y_i}}-10\overline x\overline y}}{{\sum_{i=1}^{10}{{x_i}^2}-10{{\overline x}^2}}}=\frac{545.4}{154.4}≈3.53$,
$\hat a=\overline y-b\overline x=74.9-3.53×17.4≈13.5$,
因此可求得回归直线方程$\hat y=3.53x+13.5$.
(Ⅱ)当x=18时,$\hat y=3.53×18+13.5=77.04≈77$,
故该同学预计可得77分左右.

点评 本题考查回归直线方程的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网