题目内容

9.已知数列{an}前n项和为Sn,且Sn=2an-(n-1)q-1,其中n∈N*,q为常数.
(Ⅰ)当q=0时,求数列{an}的通项公式;
(Ⅱ)当q>1时,对任意n∈N*,且n≥2,证明:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+$\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$<1.

分析 (Ⅰ)∵Sn=2an-(n-1)q-1…①,当n≥2时,Sn-1=2an-1-(n-2)q-1…②
①-②得an=2(an-an-1)-q⇒an=2an-1+q.
故当q=0时,$\frac{{a}_{n}}{{a}_{n-1}}=2\\;(n≥2)$,即数列{an}是首项为1,公比为2的等比数列.
(Ⅱ)由(Ⅰ)得an=2an-1+q.,a1=1.当q>1时,an=2an-1+q.>2an-1+1,
即$\frac{{a}_{n}+1}{{a}_{n-1}+1}>2\\;\\;(n≥2)$,${a}_{n}+1>{2}^{n}$,$\frac{1}{{a}_{n}+1}<\frac{1}{{2}^{n}}$.
可得$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+$\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$<$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$<1.

解答 解:(Ⅰ)∵Sn=2an-(n-1)q-1…①,
∴当n≥2时,Sn-1=2an-1-(n-2)q-1…②
①-②得an=2(an-an-1)-q⇒an=2an-1+q.
故当q=0时,$\frac{{a}_{n}}{{a}_{n-1}}=2\\;(n≥2)$,a1=s1=2a1-1,∴a1=1.
即数列{an}是首项为1,公比为2的等比数列,∴${a}_{n}={2}^{n-1}$;
(Ⅱ)证明:由(Ⅰ)得an=2an-1+q.,a1=1.
当q>1时,an=2an-1+q>2an-1+1,
即$\frac{{a}_{n}+1}{{a}_{n-1}+1}>2\\;\\;(n≥2)$
∴$\frac{{a}_{2}+1}{{a}_{1}+1}•\frac{{a}_{3}+1}{{a}_{2}+1}•\frac{{a}_{4}+1}{{a}_{3}+1}…\frac{{a}_{n}+1}{{a}_{n-1}+1}$>2n-1
∴${a}_{n}+1>{2}^{n}$,$\frac{1}{{a}_{n}+1}<\frac{1}{{2}^{n}}$.
则:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+$\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$<$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$<1.
∴$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+$\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$<1

点评 本题考查了利用数列的递推式求通项、数列中的放缩法,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网