题目内容

在△ABC中,a,b,c分别为角A,B,C所对的边,且
a
cosA
=
b
2cosB
=
c
3cosC

(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面积为3,求a的值.
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)利用正弦定理把已知等式中的边转化成角的正弦,化简整理可用tanA分别表示出tanB和tanC,进而利用两角和公式求得tanA,进而求得A.
(Ⅱ)利用tanA,求得tanB和tanC的值,利用同角三角函数关系取得sinB和sinC,进而根据正弦定理求得b和a的关系式,代入面积公式求得a.
解答: 解:(Ⅰ)∵
a
cosA
=
b
2cosB
=
c
3cosC

sinA
cosA
=
sinB
2cosB
=
sinC
3cosC

即tanA=
1
2
tanB=
1
3
tanC,tanB=2tanA,tanC=3tanA,
∵tanA=-tan(B+C)=-
tanB+tanC
1-tanBtanC

∴tanA=-
2tanA+3tanA
1-6tan2A
,整理求得tan2A=1,tanA=±1,
当tanA=-1时,tanB=-2,则A,B均为锐角,与A+B+C=π矛盾,故舍去,
∴tanA=1,A=
π
4

(Ⅱ)∵tanA=1,tanB=2tanA,tanC=3tanA,
∴tanB=2,tanC=3,
∴sinB=
2
5
,sinC=
3
10

a
sinA
=
b
sinB

∴b=
sinB•a
sinA
=
2
10
5
a,
∵S△ABC=
1
2
absinC=
1
2
a•
2
10
5
•a×
3
10
=
3a2
5
=3,
∴a2=5,a=
5
点评:本题主要考查了正弦定理的应用.正、余弦定理在解三角形时,进行边角关系转换时的桥梁作用,并利用正、余弦定理对三角恒等式进行证明以及对三角形形状进行判断.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网