题目内容
设数列{an}为等比数列,且满足a1+a4=
,q=
(其中n∈N*).
(Ⅰ)求{an}的通项公式;
(Ⅱ)已知bn=2n-5,记Tn=a1b1+a2b2+…+anbn,求Tn.
| 9 |
| 16 |
| 1 |
| 2 |
(Ⅰ)求{an}的通项公式;
(Ⅱ)已知bn=2n-5,记Tn=a1b1+a2b2+…+anbn,求Tn.
考点:等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得到a1[1+(
)3 ]=
,由此能求出a1=
,从而能求出an.
(Ⅱ)由bn=2n-5,an=(
)n,Tn=a1b1+a2b2+…+anbn,利用错位相减求和法有求出Tn.
| 1 |
| 2 |
| 9 |
| 16 |
| 1 |
| 2 |
(Ⅱ)由bn=2n-5,an=(
| 1 |
| 2 |
解答:
解:(Ⅰ)∵数列{an}为等比数列,且满足a1+a4=
,q=
,
∴a1[1+(
)3 ]=
,解得a1=
,
∴an=(
)n.
(Ⅱ)∵bn=2n-5,an=(
)n,Tn=a1b1+a2b2+…+anbn,
∴Tn=
+
+
+…+
,①
Tn=
+
+
+…+
,②
①-②,得
Tn=-
+
+
+
+…+
-
=-
+
-
=-
-
-
,
∴Tn=-1-
.
| 9 |
| 16 |
| 1 |
| 2 |
∴a1[1+(
| 1 |
| 2 |
| 9 |
| 16 |
| 1 |
| 2 |
∴an=(
| 1 |
| 2 |
(Ⅱ)∵bn=2n-5,an=(
| 1 |
| 2 |
∴Tn=
| -3 |
| 2 |
| -1 |
| 22 |
| 1 |
| 23 |
| 2n-5 |
| 2n |
| 1 |
| 2 |
| -3 |
| 22 |
| -1 |
| 23 |
| 1 |
| 24 |
| 2n-5 |
| 2n+1 |
①-②,得
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| 2n-5 |
| 2n+1 |
=-
| 3 |
| 2 |
| ||||
1-
|
| 2n-5 |
| 2n+1 |
=-
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 2n-5 |
| 2n+1 |
∴Tn=-1-
| 2n-1 |
| 2n |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减求和法的合理运用.
练习册系列答案
相关题目