题目内容

座落于我市红梅公园边的天宁宝塔堪称中华之最,也堪称佛塔世界之最.如图,已知天宁宝塔AB高度为150米,某大楼CD高度为90米,从大楼CD顶部C看天宁宝塔AB的张角∠ACB=45°,求天宁宝塔AB与大楼CD底部之间的距离BD.
考点:解三角形的实际应用
专题:应用题,解三角形
分析:作CE⊥AB于E,问题转化为求△ACB边AB上的高.设CE=x,只要建立起关于x的方程,则问题可解.
解答: 解:如图作CE⊥AB于E.
∵AB∥CD,AB=150,CD=90,∴BE=90,AE=60.
设CE=x,∠ACE=α,
∵∠ACB=45°,∴∠BCE=45°-α.
在Rt△AEC和Rt△BEC中,
∵tanα=
60
x
,tan(45°-α)=
90
x

90
x
=tan(45°-α)=
1-
60
x
1+
60
x

化简整理得x2-150x-5400=0,
解得x1=180,x2=-30(舍去).
答:两建筑物底部间距离BD是180米.
点评:本题主要考查了解三角形的实际应用.解这类题的关键是建立数学模型,设出恰当的角
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网