题目内容
如果曲线y=x3+x-10的切线斜率为4,求切点坐标和切线方程.
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:根据曲线的方程求出y的导函数,根据曲线的一条切线的斜率为4,令导函数等于4,求出x的值即为切点的横坐标,把求出的x的值代入曲线解析式即可求出切点的纵坐标,从而求出所求切点坐标和切线方程.
解答:
解:由y=x3+x-10,得到y′=3x2+1,
∵曲线y=x3+x-10的切线斜率为4,
∴y′=3x2+1=4,
∴x=±1.
当x=1时,切点(1,-8),切线方程为4x-y-12=0.
当x=-1时,切点(-1,-12),切线方程为4x-y-8=0.
∵曲线y=x3+x-10的切线斜率为4,
∴y′=3x2+1=4,
∴x=±1.
当x=1时,切点(1,-8),切线方程为4x-y-12=0.
当x=-1时,切点(-1,-12),切线方程为4x-y-8=0.
点评:本题考查导数的几何意义:导数在切点处的值是切线的斜率.
练习册系列答案
相关题目
不等式(x-2)(2x+1)>0的解集是( )
A、(-
| ||
B、(-2,
| ||
C、(-∞,-2)∪(
| ||
D、(-∞,-
|
已知tanα=-2,其中α是第二象限角,则cosα=( )
A、-
| ||||
B、
| ||||
C、±
| ||||
D、-
|
不等式组
的解集为( )
|
| A、(-∞,-2]∪[3,4) |
| B、(-∞,-2]∪(4,+∞) |
| C、(4,+∞) |
| D、(-∞,-2]∪(4,+∞) |
函数y=sin(2x-
)的单调递增区间是( )
| π |
| 3 |
A、[kπ-
| ||||
B、[2kπ-
| ||||
C、[kπ-
| ||||
D、[2kπ-
|