题目内容

已知数列{an}的各项均为正数,前n项和为Sn,且Sn=
an(an+1)
2
(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=
2Sn
(-2)n(n+1)
,Tn=b1+b2+…+bn,求Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)在递推式中取n=1求得a1,然后取n=n-1得另一递推式,作差后整理得到数列{an}为等差数列,则数列的通项公式可求;
(2)把an代入Sn=
an(an+1)
2
,求得Sn后代入bn=
2Sn
(-2)n(n+1)
,然后利用错位相减法求得Tn
解答: 解:(1)Sn=
an(an+1)
2
(n∈N*),
当n=1时,S1=
a1(a1+1)
2
,∴a1=1,
当n≥2时,
由Sn=
an(an+1)
2
,得2Sn=an2+an ①
取n=n-1,得2Sn-1=an-12+an-1 ②
①-②得:2an=2(Sn-Sn-1)=an2-an-12+an-an-1
∴(an+an-1)(an-an-1-1)=0,
∵an+an-1>0,
∴an-an-1=1,n≥2,
∴数列{an}是等差数列,
则an=n;
(2)由Sn=
an(an+1)
2
,an=n,
Sn=
n(n+1)
2

bn=
2Sn
(-2)n(n+1)
=
n
(-2)n

Tn=
1
-2
+
2
(-2)2
+…+
n-1
(-2)n-1
+
n
(-2)n

-2Tn=1+
2
-2
+…+
n-1
(-2)n-2
+
n
(-2)n-1

两式作差得:
-3Tn=1+
1
-2
+…+
1
(-2)n-1
-
n
(-2)n

=
1-(-
1
2
)
n
1-(-
1
2
)
-
n
(-2)n
=
2+(-
1
2
)
n-1
3
-
n
(-2)n

Tn=
n
3(-2)n
-
2+(-
1
2
)
n-1
9
=
3n+2
9(-2)n
-
2
9
点评:本题考查了数列递推式,考查了等差关系的确定,训练了利用错位相减法求数列的和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网