题目内容
14.将正偶数集合{2,4,6,…}从小到大按第n组有2n个偶数进行分组:{2,4},{6,8,10,12},{14,16,18,20,22,24},…,则2018位于( )组.| A. | 30 | B. | 31 | C. | 32 | D. | 33 |
分析 根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律即可使问题得到解决.
解答 解:第一组有2=1×2个数,最后一个数为4;
第二组有4=2×2个数,最后一个数为12即2×(2+4);
第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);
…
∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).
∴当n=31时,第31组的最后一个数为2×31×32=1984,
∴当n=32时,第32组的最后一个数为2×32×33=2112,
∴2018位于第32组.
故选:C
点评 本题考查数列的求和,考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是难点所在,属于中档题.
练习册系列答案
相关题目
9.
如图,长方形的四个顶点坐标为O(0,0),A(4,0),B(4,2),C(0,2),曲线y=$\sqrt{x}$经过点B,现将质点随机投入长方形OABC中,则质点落在图中阴影部分的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
6.设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系( )
| A. | a<b<c | B. | a<c<b | C. | b<a<c | D. | b<c<a |
4.把函数$y=cos2x+\sqrt{3}sin2x$的图象经过变化而得到y=2sin2x的图象,这个变化是( )
| A. | 向左平移$\frac{π}{12}$个单位 | B. | 向右平移$\frac{π}{12}$个单位 | ||
| C. | 向左平移$\frac{π}{6}$个单位 | D. | 向右平移$\frac{π}{6}$个单位 |