题目内容

某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
成绩分组频数频率
(160,165]50.05
(165,170]0.35
(170,175]30
(175,180]200.20
(180,185]100.10
合计1001
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?
考点:列举法计算基本事件数及事件发生的概率,频率分布表
专题:计算题,作图题,概率与统计
分析:(1)由频率=
频数
样本容量
可求其数据,频率分布直方图时注意纵轴;(2)用分层抽样的方法获取样本中的比例;(3)用古典概型求概率.
解答: 解:(1)①位置上的数据为0.35×
5
0.05
=35,②位置上的数据为
30
100
=0.3;
频率分布直方图如右图:
(2)6×
35
35+30+20
≈2.47,6×
30
85
≈2.11,6×
20
85
≈1.41.
故第3、4、5组每组各抽取3,2,1名学生进入第二轮面试.
(3)其概率模型为古典概型,
设第3、4、5组抽取的学生分别为:a,b,c,1,2,m.
则其所有的基本事件有:
(a,b),(a,c),(a,1),(a,2),(a,m),
(b,c),(b,1),(b,2),(b,m),
(c,1),(c,2),(c,m),
(1,2),(1,m),
(2,m).
共有15个,符合条件的有9个;
故概率为
9
15
=0.6.
点评:本题考查了频率分布直方图与频率分布表的作法与应用,同时考查了古典概型,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网