题目内容

若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为(  )
A、5或8B、-1或5
C、-1或-4D、-4或8
考点:带绝对值的函数,函数最值的应用
专题:选作题,不等式
分析:分类讨论,利用f(x)=|x+1|+|2x+a|的最小值为3,建立方程,即可求出实数a的值.
解答: 解:-
a
2
<-1时,x<-
a
2
,f(x)=-x-1-2x-a=-3x-a-1>
a
2
-1;
-
a
2
≤x≤-1,f(x)=-x-1+2x+a=x+a-1≥
a
2
-1;
x>-1,f(x)=x+1+2x+a=3x+a+1>a-2,
a
2
-1=3或a-2=3,
∴a=8或a=5,
a=5时,
a
2
-1<a-2,故舍去;
-
a
2
≥-1时,x<-1,f(x)=-x-1-2x-a=-3x-a-1>2-a;
-1≤x≤-
a
2
,f(x)=x+1-2x-a=-x-a+1≥-
a
2
+1;
x>-
a
2
,f(x)=x+1+2x+a=3x+a+1>-
a
2
+1,
∴2-a=3或-
a
2
+1=3,
∴a=-1或a=-4,
a=-1时,-
a
2
+1<2-a,故舍去;
综上,a=-4或8.
故选:D.
点评:本题主要考查了函数的值域问题.解题过程采用了分类讨论的思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网