题目内容

数列{an}中,a1=1,其前n项和满足
S
2
n
=an(Sn-
1
2
).
(1)求Sn的表达式;
(2)设bn=
Sn
2n+1
,数列{bn}的前n项和为Tn,求Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)把an=Sn-Sn-1代入
S
2
n
=an(Sn-
1
2
),整理得
1
Sn
-
1
Sn-1
=2
.由此可知数列{
1
Sn
}是公差为2的等差数列,求得其通项公式后得Sn的表达式;
(2)把Sn代入bn=
Sn
2n+1
,然后利用裂项相消法求和.
解答: 解:(1)由
S
2
n
=an(Sn-
1
2
)(n≥2),得
Sn+12=(Sn-Sn-1)(Sn-
1
2
)
=Sn2-
1
2
Sn-SnSn-1+
1
2
Sn-1

∴Sn-1-Sn=2SnSn-1
1
Sn
-
1
Sn-1
=2

即数列{
1
Sn
}是公差为2的等差数列,
1
S1
=
1
a1
=1

1
Sn
=1+2(n-1)=2n-1

Sn=
1
2n-1

(2)bn=
Sn
2n+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1
点评:本题考查了数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网