题目内容
设数列{an}的前n项的和Sn=
an-
×2n+1+
,n∈N*.
(1)求首项a1与通项an;
(2)设Tn=
,n=N*,证明:T1+T2+T3+…+Tn<
.
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
(1)求首项a1与通项an;
(2)设Tn=
| 2n |
| Sn |
| 3 |
| 2 |
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由Sn=
an-
×2n+1+
,n∈N*.当n≥2时,Sn-1=
an-1-
×2n+
,an=Sn-Sn-1,化为an+2n=4(an-1+2n-1),利用等比数列的通项公式即可得出.
(2)由(1)可得Sn=
(4n-2n)-
×2n+1+
=
.可得Tn=
=
(
-
).利用“裂项求和”即可证明.
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
(2)由(1)可得Sn=
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4×4n-6×2n+2 |
| 3 |
| 2n |
| Sn |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
解答:
(1)解:∵Sn=
an-
×2n+1+
,n∈N*.
∴当n=1时,a1=S1=
a1-
+
,解得a1=2.
当n≥2时,Sn-1=
an-1-
×2n+
,an=Sn-Sn-1=
an-
×2n+1+
-(
an-1-
×2n+
),
化为an=4an-1+2n,
变形为an+2n=4(an-1+2n-1),
∴数列{an+2n}是等比数列,首项为a1+2=4,公比为4.
∴an=4n-2n.
因此:a1=2,an=4n-2n.
(2)证明:由(1)可得Sn=
(4n-2n)-
×2n+1+
=
.
Tn=
=
=
=
(
-
).
∴T1+T2+T3+…+Tn<
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)<
.
∴T1+T2+T3+…+Tn<
.
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
∴当n=1时,a1=S1=
| 4 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
当n≥2时,Sn-1=
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
化为an=4an-1+2n,
变形为an+2n=4(an-1+2n-1),
∴数列{an+2n}是等比数列,首项为a1+2=4,公比为4.
∴an=4n-2n.
因此:a1=2,an=4n-2n.
(2)证明:由(1)可得Sn=
| 4 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 4×4n-6×2n+2 |
| 3 |
Tn=
| 2n |
| Sn |
| 3×2n |
| 4×4n-6×2n+2 |
| 3×2n |
| (2n+1-1)(2n+1-2) |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
∴T1+T2+T3+…+Tn<
| 3 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
=
| 3 |
| 2 |
| 1 |
| 2n+1-1 |
| 3 |
| 2 |
∴T1+T2+T3+…+Tn<
| 3 |
| 2 |
点评:本题考查了等比数列的定义及通项公式、“裂项求和”、递推式的应用,考查了变形能力,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
已知集合A={x|lgx≥0},B={y|y=2x+1,x∈R},则A∩B=( )
| A、(1,+∞) |
| B、[1,+∞) |
| C、(2,+∞) |
| D、[2,+∞) |
若(x-i)i=y+3i,(x,y∈R),则复数x+yi=( )
| A、-3+i | B、3+i |
| C、1-3i | D、′1+3i |
i为虚数单位,则复数
的虚部是( )
| 1+i |
| i |
| A、-i | B、i | C、1 | D、-1 |
已知m,n表示两条不同直线,α表示平面,下列说法正确的是( )
| A、若m∥α,n∥α,则m∥n |
| B、若m⊥α,m⊥n,则n∥α |
| C、若m⊥α,n?α,则m⊥n |
| D、若m∥α,m⊥n,则n⊥α |