题目内容

设数列{an}的前n项的和Sn=
4
3
an-
1
3
×2n+1+
2
3
,n∈N*
(1)求首项a1与通项an
(2)设Tn=
2n
Sn
,n=N*,证明:T1+T2+T3+…+Tn
3
2
考点:数列的求和,数列与不等式的综合
专题:等差数列与等比数列
分析:(1)由Sn=
4
3
an-
1
3
×2n+1+
2
3
,n∈N*.当n≥2时,Sn-1=
4
3
an-1-
1
3
×2n+
2
3
,an=Sn-Sn-1,化为an+2n=4(an-1+2n-1),利用等比数列的通项公式即可得出.
(2)由(1)可得Sn=
4
3
(4n-2n)-
1
3
×2n+1+
2
3
=
4n-6×2n+2
3
.可得Tn=
2n
Sn
=
3
2
(
1
2n-1
-
1
2n+1-1
)
.利用“裂项求和”即可证明.
解答: (1)解:∵Sn=
4
3
an-
1
3
×2n+1+
2
3
,n∈N*
∴当n=1时,a1=S1=
4
3
a1
-
4
3
+
2
3
,解得a1=2.
当n≥2时,Sn-1=
4
3
an-1-
1
3
×2n+
2
3
,an=Sn-Sn-1=
4
3
an-
1
3
×2n+1+
2
3
-(
4
3
an-1-
1
3
×2n+
2
3
)

化为an=4an-1+2n
变形为an+2n=4(an-1+2n-1)
∴数列{an+2n}是等比数列,首项为a1+2=4,公比为4.
an=4n-2n
因此:a1=2,an=4n-2n
(2)证明:由(1)可得Sn=
4
3
(4n-2n)-
1
3
×2n+1+
2
3
=
4n-6×2n+2
3

Tn=
2n
Sn
=
2n
4n-6×2n+2
=
2n
(2n+1-1)(2n+1-2)
=
3
2
(
1
2n-1
-
1
2n+1-1
)

∴T1+T2+T3+…+Tn
3
2
[(1-
1
3
)+(
1
3
-
1
7
)
+…+(
1
2n-1
-
1
2n+1-1
)]

=
3
2
(1-
1
2n+1-1
)
3
2

∴T1+T2+T3+…+Tn
3
2
点评:本题考查了等比数列的定义及通项公式、“裂项求和”、递推式的应用,考查了变形能力,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网