题目内容
已知m,n表示两条不同直线,α表示平面,下列说法正确的是( )
| A、若m∥α,n∥α,则m∥n |
| B、若m⊥α,m⊥n,则n∥α |
| C、若m⊥α,n?α,则m⊥n |
| D、若m∥α,m⊥n,则n⊥α |
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:利用线面平行、线面垂直的性质定理和判定定理对选项分别分析解答.
解答:
解:对于选项A,若m∥α,n∥α,则m与n可能相交、平行或者异面;故A错误;
对于B,若m⊥α,m⊥n,则n与α可能平行或者n在α内;故B错误;
对于C,若m⊥α,n?α,根据线面垂直的性质可得m⊥n;故C正确;
对于D,若m∥α,m⊥n,则n⊥α或者n?α;故D错误;
故选C.
对于B,若m⊥α,m⊥n,则n与α可能平行或者n在α内;故B错误;
对于C,若m⊥α,n?α,根据线面垂直的性质可得m⊥n;故C正确;
对于D,若m∥α,m⊥n,则n⊥α或者n?α;故D错误;
故选C.
点评:本题考查了线面平行、线面垂直的性质定理和判定定理的运用;熟练掌握定理是关键.
练习册系列答案
相关题目
设函数f(x)=ax+xa(a>0),则下列说法正确的是( )
| A、?a>0,f(x)为偶函数,且在R上单调递增 |
| B、?a>0,f(x)-1为奇函数,且在R上单调递增 |
| C、?a>0,f(x)为奇函数,且在R上单调递减 |
| D、?a>0,f(x)-1为偶函数,且在R上单调递减 |
已知一个项数为偶数的等比数列{an},所有项之和为所有偶数项之和的4倍,前3项之积为64,则a1=( )
| A、11 | B、12 | C、13 | D、14 |