题目内容
18.已知集合A={x|x<-1或x≥1},B={x|2a<x≤a+1,a<1},A∪B=A,求实数a的取值范围.分析 由已知得B?A,根据B=∅和B≠∅两种情况分类讨论能求出实数a的取值范围.
解答 解:∵集合A={x|x<-1或x≥1},B={x|2a<x≤a+1,a<1},A∪B=A,
∴B?A,
当B=∅时,a+1≤2a,且a<1,解得a≥1,不成立;
当B≠∅时,$\left\{\begin{array}{l}{a<1}\\{2a≥1}\end{array}\right.$或$\left\{\begin{array}{l}{a<1}\\{a+1≤-1}\end{array}\right.$,
解得$\frac{1}{2}≤a<1$或a≤-2.
∴实数a的取值范围是[$\frac{1}{2},1$)∪(-∞,-2].
点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意并集性质的合理运用.
练习册系列答案
相关题目
8.
为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成 5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示,成绩落在[70,80)中的人数为20.
(1)求a和n的值;
(2)设成绩在80分以上(含80分)为优秀,已知样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,请完成下面的2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
(1)求a和n的值;
(2)设成绩在80分以上(含80分)为优秀,已知样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,请完成下面的2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.
参考公式和数据:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k) | 0.50 | 0.05 | 0.025 | 0.005 |
| k | 0.455 | 3.841 | 5.024 | 7.879 |
| 男生 | 女生 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
6.集合A={x|-2<x<3},B={x∈Z|x2-5x<0},则A∩B=( )
| A. | {1,2} | B. | {2,3} | C. | {1,2,3} | D. | {2,3,4} |
13.关于x的函数y=log${\;}_{\frac{1}{2}}$(x2-ax+2a)在[1,+∞)上为减函数,则实数a的取值范围是( )
| A. | (-∞,2] | B. | (-1,+∞) | C. | (-1,2] | D. | (-∞,-1) |
10.若函数f(x)=sin(2x+φ)满足?x∈R,f(x)≤f($\frac{π}{6}$),则f(x)在[0,π]上的单调递增区间为( )
| A. | [0,$\frac{π}{6}$]与[$\frac{π}{2}$,$\frac{2π}{3}$] | B. | [$\frac{π}{3}$,$\frac{2π}{3}$] | C. | [0,$\frac{π}{6}$]与[$\frac{2π}{3}$,π] | D. | [0,$\frac{π}{6}$]与[$\frac{π}{3}$,$\frac{2π}{3}$] |
7.下列所示的四幅图中,是函数图象的是( )
| A. | B. | C. | D. |