题目内容

6.设函数f(x,y)=(1+my)x(m>0,y>0).
(1)当m=2时,求f(7,y)的展开式中二项式系数最大的项;
(2)已知f(2n,y)的展开式中各项的二项式系数和比f(n,y)的展开式中各项的二项式系数和大992,若f(n,y)=a0+a1y+…+anyn,且a2=40,求$\sum_{i=1}^n{ai}$;
(3)已知正整数n与正实数t,满足$f({n,1})={m^n}f({n,\frac{1}{t}})$,求证:$f({2017,\frac{1}{{1000\sqrt{t}}}})>6f({-2017,\frac{1}{t}})$..

分析 (1)将m代入,利用二项式定理展开式的通项求指定项;
(2)由题意,分别求出二项式系数,得到n的方程求出n,然后利用赋值法解答;
(3)利用已知的定义,将$f({n,1})={m^n}f({n,\frac{1}{t}})$用二项式表示,从要证明的左边入手,对$f(2017,\frac{1}{{1000\sqrt{t}}})$变形为(1+$\frac{m}{1000\sqrt{t}}$)2017=(1+$\frac{1}{1000}$)2017>1+$C_{2017}^1$$\frac{1}{1000}$+$C_{2017}^2$($\frac{1}{1000}$)2+$C_{2017}^3$($\frac{1}{1000}$)3>1+2+2+1=6,而$f(-2017,\frac{1}{t})$=${({1+\frac{m}{t}})^{-2017}}$=(1+$\frac{1}{\sqrt{t}}$)-2017<1,得证.

解答 解:(1)当m=2时,因为f(7,y)=(1+2y)7,故展开式中二项式系数最大的项分别是第4项和第5项,即T4=$C_7^3{({2y})^3}$=280y3,${T_5}=C_7^4{({2y})^4}=560{y^4}$;   …(5分)
(2)由题意知,f(2n,y)=(1+my)2n,f(n,y)=(1+my)n;f(2n,y)的展开式中各项的二项式系数和比f(n,y)的展开式中各项的二项式系数和大992,
∴22n-2n=992,即(2n-32)(2n+31)=0,
所以2n=32,解得n=5,…(7分)
则由f(5,y)=(1+my)5=${a_0}+{a_1}y+…+{a_5}{y^5}$,又${a_2}=C_5^2{m^2}=40$,且m>0,所以m=2,则$\sum_{i=1}^5{a_i}$=(1+2)5-1=35-1=242; …(10分)
(3)证明:由$f(n,1)={m^n}f(n,\frac{1}{t})$,得(1+m)n=mn(1+$\frac{m}{t}$)n=(m+$\frac{{m}^{2}}{t}$)n
则1+m=m+$\frac{{m}^{2}}{t}$,所以m=$\sqrt{t}$,…(12分)
又$f(2017,\frac{1}{{1000\sqrt{t}}})$=(1+$\frac{m}{1000\sqrt{t}}$)2017=(1+$\frac{1}{1000}$)2017>1+$C_{2017}^1$$\frac{1}{1000}$+$C_{2017}^2$($\frac{1}{1000}$)2+$C_{2017}^3$($\frac{1}{1000}$)3>1+2+2+1=6,
而$f(-2017,\frac{1}{t})$=${({1+\frac{m}{t}})^{-2017}}$=(1+$\frac{1}{\sqrt{t}}$)-2017<1,
所以$f(2017,\frac{1}{{1000\sqrt{t}}})>$$6f(-2017,\frac{1}{t})$.…(16分)

点评 本题考查了二项式定理的运用;明确展开式的通项,展开式的二项式系数以及项的系数;属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网