题目内容

已知数列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N+).请用数学归纳法证明:当n∈N+时,an<an+1
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:对于n∈N时的命题,考虑利用数学归纳法证明.
解答: 证明:用数学归纳法证明.
①当n=1时,因为a2是方程x2+x-1=0的正根,所以a1<a2
②假设当n=k(k∈N*)时,ak<ak+1
因为ak+12-ak2=(ak+22+ak+2-1)-(ak+12+ak+1-1)=(ak+2-ak+1)(ak+2+ak+1+1),
所以ak+1<ak+2
即当n=k+1时,an<an+1也成立.
根据①和②,可知an<an+1对任何n∈N*都成立.
点评:本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网