题目内容

2.在锐角△ABC中,角A,B,C的对边分别为a,b,c,且满足$2bcos({C-\frac{π}{3}})=a+c$.
(1)求角B的大小;
(2)若b=$\sqrt{3}$,求ac的取值范围.

分析 (1)根据题意,对于$2bcos({C-\frac{π}{3}})=a+c$,由正弦定理可得$2sinBcos({C-\frac{π}{3}})=sinA+sinC$,变形可得$\sqrt{3}sinB-cosB=1$,由正弦的和差公式可得$sin({B-\frac{π}{6}})=\frac{1}{2}$,结合B的范围分析可得答案;
(2)由(1)可得b和B的值,由正弦定理分析可得$\frac{a}{sinA}=\frac{c}{sinC}=\frac{b}{sinB}=2$,进而分析可得$a•c=4sinAsin({\frac{2π}{3}-A})=4sinA({\frac{{\sqrt{3}}}{2}cosA+\frac{1}{2}sinA})$,对其变形化简可得ac=2sin(2A-$\frac{π}{6}$)+1,结合A的范围,分析可得答案.

解答 解:(1)根据题意,∵$2bcos({C-\frac{π}{3}})=a+c$,
∴由正弦定理得:$2sinBcos({C-\frac{π}{3}})=sinA+sinC$,
∴$2sinB({\frac{1}{2}cosC+\frac{{\sqrt{3}}}{2}sinC})=sin({B+C})+sinC$,
即:$\sqrt{3}sinB-cosB=1$,
∴$sin({B-\frac{π}{6}})=\frac{1}{2}$,
∵△ABC为锐角三角形,∴$B-\frac{π}{6}∈({-\frac{π}{6},\frac{π}{3}})$,∴$B-\frac{π}{6}=\frac{π}{6}$即$B=\frac{π}{3}$;
(2)∵$b=\sqrt{3},B=\frac{π}{3}$,∴由正弦定理有:$\frac{a}{sinA}=\frac{c}{sinC}=\frac{b}{sinB}=2$,
∴由正弦定理有:$\frac{a}{sinA}=\frac{c}{sinC}=\frac{b}{sinB}=2$,
∴a=2sinA,c=2sinC,a•c=4sinAsinC,
∵$B=\frac{π}{3}$,∴$C=\frac{2π}{3}-A$,
∴$a•c=4sinAsin({\frac{2π}{3}-A})=4sinA({\frac{{\sqrt{3}}}{2}cosA+\frac{1}{2}sinA})$
$\begin{array}{l}=2\sqrt{3}sinAcosA+2{sin^2}A\\=\sqrt{3}sin2A+1-cos2A\\=2sin({2A-\frac{π}{6}})+1\end{array}$
∵△ABC为锐角三角形,∴$A∈({0,\frac{π}{2}}),C=\frac{2π}{3}-A∈({0,\frac{π}{2}})$,
∴$A∈({\frac{π}{6},\frac{π}{2}})$,∴$2A-\frac{π}{6}∈({\frac{π}{6},\frac{5π}{6}})$,
∴a•c∈(2,3].

点评 本题考查正余弦定理的应用,涉及三角函数的恒等变形,关键是熟悉三角函数的恒等变形的公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网