ÌâÄ¿ÄÚÈÝ

ÉèÎÞÇîÊýÁÐ{an}£¬Èç¹û´æÔÚ³£ÊýA£¬¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÊý?£¨ÎÞÂÛ¶àС£©£¬×Ü´æÔÚÕýÕûÊýN£¬Ê¹µÃn£¾Nʱ£¬ºãÓÐ|an-A|£¼?³ÉÁ¢£¬¾Í³ÆÊýÁÐ{an}µÄ¼«ÏÞΪA£¬ÔòËĸöÎÞÇîÊýÁУº
¢Ù{£¨-1£©n¡Á2}£»
¢Ú{
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
(2n-1)(2n+1)
}£»
¢Û{1+
1
2
+
1
22
+
1
23
+¡­+
1
2n-1
}£»
¢Ü{1¡Á2+2¡Á22+3¡Á23+¡­+n¡Á2n}£¬
Æä¼«ÏÞΪ2¹²ÓУ¨¡¡¡¡£©
A¡¢4¸öB¡¢3¸öC¡¢2¸öD¡¢1¸ö
¿¼µã£ºÊýÁеļ«ÏÞ
רÌ⣺¼ÆËãÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º·Ö±ðÇóºÍ£¬ÔÙÇó¼«ÏÞ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º ½â£º¢ÙÊýÁÐ{£¨-1£©n¡Á2}Êǰڶ¯ÊýÁУ¬²»´æÔÚ¼«ÏÞ£»
¢Ú
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
(2n-1)(2n+1)
=
1
2
£¨1-
1
3
+
1
3
-
1
5
+¡­+
1
2n-1
-
1
2n+1
£©=
1
2
£¨1-
1
2n+1
£©£¬ÊýÁÐ{an}µÄ¼«ÏÞΪ
1
2
£»
¢Û{1+
1
2
+
1
22
+
1
23
+¡­+
1
2n-1
}µÄ¼«ÏÞΪ
1
1-
1
2
=2£»
¢ÜSn=1¡Á2+2¡Á22+3¡Á23+¡­+n¡Á2n¡­¢Ù£¬
2Sn=1•22+2•23+¡­+n•2n+1 ¡­¢Ú£¬
¡à¢Ù-¢ÚµÃ-Sn=21+22+23+¡­+2n-n•2n+1
¡à-Sn=2n+1-2-n¡Á2n+1
¡àSn=£¨n-1£©2n+1+2£¬
¡àÊýÁÐ{an}µÄ¼«ÏÞ²»´æÔÚ£®
¹ÊÑ¡£ºD£®
µãÆÀ£º±¾Ì⿼²éÊýÁеļ«ÏÞ£¬¿¼²éÊýÁеÄÇóºÍ£¬ÕýÈ·ÇóºÍÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø