题目内容
已知等差数列{an}的前n项和为Sn,S7=49,5是a1和a5的等差中项.
(1)求an与Sn
(2)证明:当n≥2时,有
+
+…+
<
.
(1)求an与Sn
(2)证明:当n≥2时,有
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 7 |
| 4 |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知列式求出等差数列的首项和公差,代入等差数列的通项公式和前n项和得答案;
(2)由
<
把数列的项放大,然后利用裂项相消法求和,再放缩得答案.
(2)由
| 1 |
| n2 |
| 1 |
| (n-1)n |
解答:
(1)解:设等差数列{an}的公差为d,
由S7=49,5是a1和a5的等差中项,得
,解得:
.
∴an=1+2(n-1)=2n-1,Sn=n+
=n2;
(2)证明:
+
+…+
=
+
+
+…+
.
当n=2时,
+
=1+
=
<
;
当n≥3时,
+
+…+
=
+
+
+…+
<
+
+
+…+
=
+
-
+
-
+…+
-
=
-
<
.
由S7=49,5是a1和a5的等差中项,得
|
|
∴an=1+2(n-1)=2n-1,Sn=n+
| 2n(n-1) |
| 2 |
(2)证明:
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
当n=2时,
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| 4 |
| 5 |
| 4 |
| 7 |
| 4 |
当n≥3时,
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
<
| 5 |
| 4 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| (n-1)n |
| 5 |
| 4 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n |
=
| 7 |
| 4 |
| 1 |
| n |
| 7 |
| 4 |
点评:本题考查了等差数列的通项公式,考查了裂项相消法求数列的和,训练了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目