题目内容

1.已知△ABC的三内角A,B,C,所对三边分别为a,b,c,sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,若△ABC的面积S=24,b=10,则a的值是(  )
A.5B.6C.7D.8

分析 由题意和两角差的正弦公式化简已知的式子,联立平方关系、内角的范围求出sinA和cosA的值,由条件和三角形的面积公式列出方程求出c,由余弦定理求出a的值.

解答 解:由sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$得,$\frac{\sqrt{2}}{2}$(sinA-cosA)=$\frac{\sqrt{2}}{10}$,
则sinA-cosA=$\frac{1}{5}$,联立sin2A+cos2A=1,
解得$\left\{\begin{array}{l}{sinA=\frac{4}{5}}\\{cosA=\frac{3}{5}}\end{array}\right.$或$\left\{\begin{array}{l}{sinA=-\frac{3}{5}}\\{cosA=-\frac{4}{5}}\end{array}\right.$(舍去),
又0<A<π,即sinA=$\frac{4}{5}$,
因为△ABC的面积S=24,b=10,
所以$\frac{1}{2}bcsinA=24$,解得c=6,
由余弦定理得,a2=b2+c2-2bccosA
=100+36-$2×10×6×\frac{3}{5}$=64,
则a=8,
故选D.

点评 本题考查余弦定理,三角形的面积公式,以及两角差的正弦公式等应用,考查化简、计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网