题目内容
在长方体ABCD﹣A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为( )
A.
B.
C.
D.![]()
A
【解析】
试题分析:可以考虑用向量解决本题,所以分别以DA,DC,DD1三直线为x轴,y轴,z轴建立空间直角坐标系,根据线面角的概念知D1C1与平面A1BC1所成角的正弦值等于
与平面A1BC1的法向量夹角的余弦值的绝对值,所以根据已知的边的长度求出
的坐标,设平面A1BC1的法向量为
,根据向量
与
垂直即可求出
,根据向量夹角余弦公式即可求出向量
,
夹角的余弦值的绝对值.
【解析】
如图,分别以DA,DC,DD1三条边所在直线为x轴,y轴,z轴建立空间直角坐标系;
根据题意知,D1C1与平面A1BC1所成角的正弦值等于向量
和平面A1BC1的法向量夹角余弦值的绝对值;
根据已知的边的长度,可求以下几点坐标:
D1(0,0,1),C1(0,2,1),A1(1,0,1),B(1,2,0);
∴
,
,
;
设平面A1BC1的法向量为
,则
;
∴
,取y=1,∴
;
∴
=
.
故选A.
![]()
练习册系列答案
相关题目