题目内容

如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧棱VA⊥底面ABCD,点E为VA的中点.
(Ⅰ)求证:VC∥平面BED;
(Ⅱ)求证:平面VAC⊥平面BED.
考点:直线与平面平行的判定,直线与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)连结OE,证明:OE∥VC,利用线面平行的判定定理证明VC∥平面BED;
(Ⅱ)证明BD⊥平面VAC,利用平面与平面垂直的判定定理证明平面VAC⊥平面BED.
解答: 证明:(Ⅰ)连结OE.
∵底面ABCD是正方形,∴O为AC的中点.
又E为VA的中点,∴OE∥VC.…(3分)
又VC?平面BED,OE?平面BED,
∴VC∥平面BED.…(6分)
(Ⅱ)∵VA⊥平面ABCD,∴VA⊥BD.…(7分)
又 AC⊥BD,AC∩VA=A,
∴BD⊥平面VAC.…(10分)
∵BD?平面BED,
∴平面VAC⊥平面BED.…(12分)
点评:本题考查线面平行的判定定理、考查平面与平面垂直的判定定理,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网