题目内容
11.把98(5)转化为九进制数为58(9).分析 先将“五进制”数化为十进制数,然后将十进制化为九进制,即可得到结论.
解答 解:先将“五进制”数98(5)化为十进制数为9×51+8×50=53(10)
然后将十进制的53化为九进制:
53÷9=5余8,
5÷9=0余5,
所以,结果是58(9)
故答案为:58(9)
点评 本题考查的知识点是五进制、十进制与九进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.
练习册系列答案
相关题目
2.已知F1、F2分别为双曲线C:x2-$\frac{{y}^{2}}{3}$=1的左、右焦点,过原点的一条直线交双曲线C于A、B两点(点A位于第一象限),且满足AF1⊥BF1,则△AF1F2的内切圆圆心的横、纵坐标之和为( )
| A. | 2$\sqrt{2}$-1 | B. | $\sqrt{2}+$1 | C. | $\sqrt{7}$-1 | D. | 2$\sqrt{7}$-3 |
19.已知函数f(x)=$\left\{\begin{array}{l}12ax+1,0<x<a\\{log_{\frac{1}{2}}}x+2,a≤x<1\end{array}$且f(a2)=$\frac{5}{2}$,若当0<x1<x2<1时,f(x1)=f(x2),则x1•f(x2)的取值范围为( )
| A. | $(\frac{1}{6},\frac{1}{3}]$ | B. | $(\frac{1}{3},1]$ | C. | $[\frac{1}{6},\frac{1}{3})$ | D. | $[\frac{1}{3},1)$ |
6.甲乙两家快递公司,其快递员的日工资方案如下:甲公司底薪70元,每单抽成2;乙公式无底薪,40单内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元,假设同一公司快递员一天送快递单数相同,现从两家公司各随机抽取一名快递员,并分别记录其100天的送快递单数,得到如下的频率表:
甲公司快递员送快递单数频数表
乙公司快递员送快递单数频数表
(1)记乙公司快递员日工资为X(单位:元),求X的分布列和数学期望;
(2)小明到甲乙两家公司中的一家应聘快递员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.
甲公司快递员送快递单数频数表
| 送餐单数 | 38 | 39 | 40 | 41 | 42 |
| 天数 | 20 | 40 | 20 | 10 | 10 |
| 送餐单数 | 38 | 39 | 40 | 41 | 42 |
| 天数 | 10 | 20 | 20 | 40 | 10 |
(2)小明到甲乙两家公司中的一家应聘快递员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.
3.若复数z满足$\frac{zi}{z-i}=1$,其中i为虚数单位,则复数z的共轭复数为( )
| A. | $-\frac{1}{2}+\frac{i}{2}$ | B. | $-\frac{1}{2}-\frac{i}{2}$ | C. | $\frac{1}{2}-\frac{i}{2}$ | D. | $\frac{1}{2}+\frac{i}{2}$ |
20.已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2,则a的值为( )
| A. | 1 | B. | 3 | C. | $\frac{1}{2}$ | D. | 5 |