ÌâÄ¿ÄÚÈÝ

1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶¯µãM£¨x£¬y£©Âú×ãÌõ¼þ$\sqrt{£¨x-1{£©^2}+{y^2}}+\sqrt{£¨x+1{£©^2}+{y^2}}=2\sqrt{2}$£®
£¨1£©Ç󶯵ãMµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßy=kx+m£¨m¡Ù0£©ÓëÇúÏßE·Ö±ð½»ÓÚA£¬BÁ½µã£¬ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚC£¬DÁ½µã£¨ÇÒC¡¢DÔÚA¡¢BÖ®¼ä»òͬʱÔÚA¡¢BÖ®Í⣩£®ÎÊ£ºÊÇ·ñ´æÔÚ¶¨Öµk£¬¶ÔÓÚÂú×ãÌõ¼þµÄÈÎÒâʵÊým£¬¶¼ÓС÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ýÏàµÈ£¬Èô´æÔÚ£¬ÇókµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃ$\sqrt{£¨x-1{£©^2}+{y^2}}+\sqrt{£¨x+1{£©^2}+{y^2}}=2\sqrt{2}$£¬»¯¼òÕûÀí¿ÉµÃ¹ì¼£EµÄ·½³Ì£®
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=2}\end{array}}\right.$ÏûÈ¥yµÃ£¬Í¨¹ý¡÷£¾0µÃm2£¼2k2+1£¨*£©£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨ÀíÇó³ö${x_1}+{x_2}=\frac{-4mk}{{2{k^2}+1}}$£¬ÓÉÌâÒ⣬²»·ÁÉè$C£¨{-\frac{m}{k}£¬0}£©£¬D£¨{0£¬m}£©$£¬Í¨¹ý¡÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ý×ÜÏàµÈת»¯ÎªÏß¶ÎABµÄÖеãÓëÏß¶ÎCDµÄÖеãÖØºÏ£¬Çó³ök£¬¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©ÒòΪMÂú×ã$\sqrt{£¨x-1{£©^2}+{y^2}}+\sqrt{£¨x+1{£©^2}+{y^2}}=2\sqrt{2}$£¬ÕûÀíµÃ$\frac{x^2}{2}+{y^2}=1$£¬
¡à¹ì¼£EµÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$¡­£¨4·Ö£©
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=2}\end{array}}\right.$ÏûÈ¥yµÃ£¨1+2k2£©x2+4mkx+2m2-2=0£¬¡÷=£¨4mk£©2-4£¨1+2k2£©£¨2m2-2£©=8£¨2k2-m2+1£©£¬ÓÉ¡÷£¾0µÃm2£¼2k2+1£¨*£©£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x_1}+{x_2}=\frac{-4mk}{{2{k^2}+1}}$£¬¡­£¨6·Ö£©
ÓÉÌâÒ⣬²»·ÁÉè$C£¨{-\frac{m}{k}£¬0}£©£¬D£¨{0£¬m}£©$£¬¡÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ý×ÜÏàµÈ?|AC|=|BD|ºã³ÉÁ¢?Ïß¶ÎABµÄÖеãÓëÏß¶ÎCDµÄÖеãÖØºÏ¡­£¨8·Ö£©
¡à$\frac{-4mk}{{2{k^2}+1}}=-\frac{m}{k}$£¬½âµÃ$k=¡À\frac{{\sqrt{2}}}{2}$£¬¡­£¨10·Ö£©
¼´´æÔÚ¶¨Öµ$k=¡À\frac{{\sqrt{2}}}{2}$£¬¶ÔÓÚÂú×ãÌõ¼þm¡Ù0£¬ÇÒ$|m|£¼\sqrt{2}$£¨¾Ý£¨*£©µÄÈÎÒâʵÊým£¬
¶¼ÓС÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ýÏàµÈ£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£¬×¢ÒâÉè¶ø²»Çó·½·¨µÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø