题目内容
已知数列{an}是公差不为零的等差数列,其前n项和为Sn,且S5=30,又a1,a3,a9成等比数列.
(Ⅰ)求Sn;
(Ⅱ)若对任意n>t,n∈N•,都有
+
+…+
>
,求t的最小值.
(Ⅰ)求Sn;
(Ⅱ)若对任意n>t,n∈N•,都有
| 1 |
| S1+a1+2 |
| 1 |
| S2+a2+2 |
| 1 |
| Sn+an+2 |
| 12 |
| 25 |
考点:数列与不等式的综合,等比数列的性质
专题:等差数列与等比数列,不等式的解法及应用
分析:(Ⅰ)由a1,a3,a9成等比数列列方程组求出首项和公差,则Sn可求;
(Ⅱ)把an,Sn代入
,整理后列项,求和后得到使
+
+…+
>
成立的t的最小值.
(Ⅱ)把an,Sn代入
| 1 |
| Sn+an+2 |
| 1 |
| S1+a1+2 |
| 1 |
| S2+a2+2 |
| 1 |
| Sn+an+2 |
| 12 |
| 25 |
解答:
解:(Ⅰ)设公差为d,由条件得
,得a1=d=2.
∴an=2n,
Sn=2n+
=n2+n;
(Ⅱ)∵
=
=
=
=
-
.
∴
+
+…+
=(
-
)+(
-
)+…+(
-
)
=
-
>
.
∴
<
-
=
,
即:n+2>50,n>48.
∴t的最小值为48.
|
∴an=2n,
Sn=2n+
| n(n-1)×2 |
| 2 |
(Ⅱ)∵
| 1 |
| Sn+an+2 |
| 1 |
| n2+n+2n+2 |
| 1 |
| n2+3n+2 |
=
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴
| 1 |
| S1+a1+2 |
| 1 |
| S2+a2+2 |
| 1 |
| Sn+an+2 |
=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
| 12 |
| 25 |
∴
| 1 |
| n+2 |
| 1 |
| 2 |
| 12 |
| 25 |
| 1 |
| 50 |
即:n+2>50,n>48.
∴t的最小值为48.
点评:题是数列与不等式综合题,考查了等差数列的前n项和与等比数列的通项公式,考查了裂项相消法求数列的和,训练了放缩法证明数列不等式,是压轴题.
练习册系列答案
相关题目
设在矩形ABCD中,AB⊥BC,AD⊥DC,若|
|=3,|
|=5,则
•
=( )
| AB |
| AD |
| AC |
| BD |
| A、-16 | B、16 | C、25 | D、15 |
集合M={y|y=2x-1,x∈R},N={x|y=
,x∈R},则M∩N=( )
| 3-x2 |
| A、∅ | ||||
| B、(-1,+∞) | ||||
C、(
| ||||
D、(-1,
|