ÌâÄ¿ÄÚÈÝ
14£®É赥λÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪÈñ½Ç£¬Èô¶ÔÈÎÒâµÄ£¨x£¬y£©¡Ê{£¨x£¬y£©|x$\overrightarrow{a}$+y$\overrightarrow{b}$|=1£¬xy¡Ý0}£¬¶¼ÓÐ|x+2y|¡Ü$\frac{8}{\sqrt{15}}$³ÉÁ¢£¬Ôò$\overrightarrow{a}$•$\overrightarrow{b}$µÄ×îСֵΪ$\frac{1}{4}$£®·ÖÎö É赥λÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ¦È£¬ÓÉ|x$\overrightarrow{a}$+y$\overrightarrow{b}$|=1£¬xy¡Ý0£¬µÃ£¨x+ycos¦È£©2+£¨ysin¦È£©2=1£»
ÓÉ|x+2y|¡Ü$\frac{8}{\sqrt{15}}$µÃ³ö[£¨x+ycos¦È£©2+£¨ysin¦È£©2][1+${£¨\frac{2-cos¦È}{sin¦È}£©}^{2}$]¡Ý$\frac{64}{15}$£¬
Áît=cos¦È£¬µÃ³ö1+$\frac{{£¨2-t£©}^{2}}{1{-t}^{2}}$¡Ý$\frac{64}{15}$£¬Çó²»µÈʽµÄ½â¼¯¿ÉµÃ$\overrightarrow{a}$•$\overrightarrow{b}$=cos¦ÈµÄ×îСֵ£®
½â´ð ½â£ºÉ赥λÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪÈñ½Ç¦È£¬
ÓÉ|x$\overrightarrow{a}$+y$\overrightarrow{b}$|=1£¬xy¡Ý0£¬
µÃx2+y2+2xycos¦È=1£¬
¡àx2+2xycos¦È+y2cos2¦È+y2sin2¦È=1£¬
¼´£¨x+ycos¦È£©2+£¨ysin¦È£©2=1£»
ÓÖ|x+2y|¡Ü$\frac{8}{\sqrt{15}}$£¬
ËùÒÔ[£¨x+ycos¦È£©2+£¨ysin¦È£©2][1+${£¨\frac{2-cos¦È}{sin¦È}£©}^{2}$]¡Ý$\frac{64}{15}$£»
Áît=cos¦È£¬Ôò1+$\frac{{£¨2-t£©}^{2}}{1{-t}^{2}}$¡Ý$\frac{64}{15}$£¬
»¯¼òµÃ64t2-60t+11¡Ü0£¬
¼´£¨16t-11£©£¨4t-1£©¡Ü0£¬
½âµÃ$\frac{1}{4}$¡Üt¡Ü$\frac{11}{16}$£¬
ËùÒÔ$\overrightarrow{a}$•$\overrightarrow{b}$=cos¦È¡Ý$\frac{1}{4}$£¬
¼´$\overrightarrow{a}$•$\overrightarrow{b}$µÄ×îСֵΪ$\frac{1}{4}$£®
¹Ê´ð°¸Îª£º$\frac{1}{4}$£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿ÊýÁ¿»ýÓë²»µÈʽµÄ½â·¨ÓëÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
| A£® | £¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£© | B£® | £¨-1£¬0£©¡È£¨0£¬1£© | C£® | £¨1£¬+¡Þ£© | D£® | £¨0£¬1£© |