题目内容
4.函数f(x)=x2+(3a-1)x+a-4的一个零点比1大,另一个零点比1小,则实数a的取值范围是(-∞,1).分析 由条件利用二次函数的性质可得f(1)<0,由此求得a的范围.
解答 解:由题意可得f(1)=1+3a-1+a-4=4a-4<0,
求得a<1,
故答案为:(-∞,1).
点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关题目
15.“m=2”是“loga2+log2a≥m(a>1)恒成立”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
12.若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x,x>1}\\{(8-a)x-4,x≤1}\end{array}\right.$是R上的增函数,则实数a的取值范围为( )
| A. | (1,+∞) | B. | (1,8) | C. | (4,8) | D. | [4,8) |
19.下列结论不正确的是( )
| A. | 若y=ln3,则y′=0 | B. | 若y=-$\sqrt{x}$,则y′=-$\frac{1}{2\sqrt{x}}$ | ||
| C. | 若y=$\frac{1}{\sqrt{x}}$,则y′=-$\frac{1}{2\sqrt{x}}$ | D. | 若y=3x,则y′=3 |