题目内容
15.在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不小于9cm2的概率为( )| A. | $\frac{4}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
分析 根据几何概型的概率公式,设AC=x,则BC=10-x,由矩形的面积S=x(10-x)≥9可求x的范围,利用几何概率的求解公式可求.
解答 解:设AC=x,则BC=10-x,
矩形的面积S=x(10-x)≥9,
∴x2-10x+9≤0
解得1≤x≤9,
由几何概率的求解公式可得,矩形面积不小于9cm2的概率为
P=$\frac{9-1}{10}$=$\frac{4}{5}$.
故选:A.
点评 本题主要考查了二次不等式的解法以及与区间长度有关的几何概率的计算问题,是基础题目.
练习册系列答案
相关题目
5.方程ex=5-x的根所在的大致区间为( )
| A. | ($\frac{1}{2}$,1) | B. | (1,$\frac{3}{2}$) | C. | ($\frac{3}{2}$,2) | D. | (2,$\frac{5}{2}$) |
6.已知A、B、C是平面上不共线的三点,O是△ABC的重心,点P满足$\overrightarrow{OP}$=$\frac{1}{4}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+2$\overrightarrow{OC}$),则$\frac{{S}_{△PAB}}{{S}_{△OAB}}$为( )
| A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | 2 | D. | $\frac{1}{2}$ |
20.为了增强消防安全意识,某中学对全体学生做了一次消防知识讲座,从男生中随机抽取50人,从女生中随机抽取70人参加消防知识测试,统计数据得到如下列联表:
(Ⅰ)试判断是否有90%的把握认为消防知识的测试成绩优秀与否与性别有关;
附:
K2=$\frac{a(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(Ⅱ)为了宣传消防安全知识,从该校测试成绩获得优秀的同学中采用分层抽样的方法,随机选出6名组成宣传小组.现从这6人中随机抽取2名到校外宣传,求到校外宣传的同学中至少有1名是男生的概率.
| 优秀 | 非优秀 | 总计 | |
| 男生 | 15 | 35 | 50 |
| 女生 | 30 | 40 | 70 |
| 总计 | 45 | 75 | 120 |
附:
K2=$\frac{a(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
5.若二项式x(2x-$\frac{a}{x}$)7的展开式中$\frac{1}{{x}^{2}}$的系数是84,则实数a=( )
| A. | 2 | B. | -$\root{5}{4}$ | C. | -1 | D. | $\frac{\sqrt{2}}{4}$ |