题目内容

已知函数f(x)的导函数为f(x),且f(x)=2xf′(1)+lnx,则f(1)=
 
考点:导数的运算
专题:导数的概念及应用
分析:已知函数f(x)的导函数为f′(x),利用求导公式对f(x)进行求导,再把x=1代入,即可求解;
解答: 解:∵函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,(x>0)
∴f′(x)=2f′(1)+
1
x

把x=1代入f′(x)可得f′(1)=2f′(1)+1,
解得f′(1)=-1,
∴f(x)=-2x+lnx,
∴f(1)=-2
故答案为:-2
点评:此题主要考查导数的加法与减法的法则,解决此题的关键是对f(x)进行正确求导,把f′(1)看成一个常数,就比较简单了;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网