题目内容

10.已知向量,满足$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)=3$,且$|\overrightarrow a|=1$,$\overrightarrow b=(1,1)$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{π}{4}$

分析 根据平面向量的数量积的定义解答.

解答 解:设$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,
∵$\overrightarrow{b}$=(1,1),
∴|$\overrightarrow{b}$|=$\sqrt{2}$,
∵$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)=3$,且$|\overrightarrow a|=1$,
∴|$\overrightarrow{a}$|2-2$\overrightarrow{a}•\overrightarrow{b}$=1-2|$\overrightarrow{a}$|•|$\overrightarrow{b}$|cosθ=3,
∴cosθ=-$\frac{\sqrt{2}}{2}$,
∵0≤θ≤π,
∴θ=$\frac{3π}{4}$,
故选:B

点评 本题考查了向量的数量积的定义以及向量模的运用求向量的夹角,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网