题目内容
8.在复平面内,复数z的对应点为(1,-2),复数z的共轭复数$\overline{z}$,则($\overline{z}$)2=( )| A. | -3-4i | B. | -3+4i | C. | 5-4i | D. | 5+4i |
分析 利用复数的运算法则、共轭复数的定义、几何意义即可得出.
解答 解:复数z的对应点为(1,-2),复数z=1-2i的共轭复数$\overline{z}$=1+2i,则($\overline{z}$)2=(1+2i)2=-3+4i.
故选:B.
点评 本题考查了复数的运算法则、共轭复数的定义、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
16.设点M(x,y)满足不等式组$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,点P(-4a,a)(a>0),则当$\overrightarrow{OP}•\overrightarrow{OM}$最大时,点M为( )
| A. | (0,2) | B. | (0,0) | C. | (4,6) | D. | (2,6) |
3.等腰直角三角形ABC中,∠C=90°,AC=BC=2,点P是△ABC斜边上任意一点,则线段CP的长度不大于$\sqrt{3}$的概率是( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{2}}}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{6}}}{4}$ |
20.已知命题p:?x∈(1,+∞),x3+16>8x,则命题p的否定为( )
| A. | ?x∈(1,+∞),x3+16≤8x | B. | ?x∈(1,+∞),x3+16<8x | ||
| C. | ?x∈(1,+∞),x3+16≤8x | D. | ?x∈(1,+∞),x3+16<8x |
18.已知x=lnπ,y=$lo{g}_{\frac{1}{3}}\frac{\sqrt{2}}{2}$,z=${π}^{-\frac{1}{2}}$,则( )
| A. | x<y<z | B. | z<x<y | C. | z<y<x | D. | y<z<x |