题目内容

对于数列{an},a1=4,an+1=f(an),n=1,2,…,则a2012等于(  )
x 1 2 3 4 5
f(x) 5 4 3 1 2
A、2B、3C、4D、5
考点:数列的函数特性
专题:函数的性质及应用
分析:由表格可知:f(1)=5,f(5)=2,f(2)=4,f(4)=1,f(3)=3.又a1=4,an+1=f(an),n=1,2,…,可得an+4=an.即可得出.
解答: 解:由表格可知:f(1)=5,f(5)=2,f(2)=4,f(4)=1,f(3)=3.
又a1=4,an+1=f(an),n=1,2,…,
∴a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=f(5)=2,a5=f(a4)=f(2)=4,a6=f(a5)=f(4)=1.….
∴an+4=an
∴a2012=a4×502+4=a4=2.
故选:A.
点评:本题考查了函数的性质、数列的周期性,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网