题目内容
10.下列函数在其定义域上既是奇函数又是减函数的是( )| A. | f(x)=2x | B. | f(x)=log${\;}_{\frac{1}{2}}$x | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=-x|x| |
分析 利用奇偶性、单调性的定义,分别进行判断,即可得出结论.
解答 解:对于A,B,非奇非偶函数;
对于C,是奇函数,不是定义域上的减函数;
对于D,在其定义域上既是奇函数又是减函数,
故选:D.
点评 本题考查函数奇偶性、单调性的定义,考查学生对概念的理解,属于中档题.
练习册系列答案
相关题目
15.已知三棱柱ABC-A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为$\sqrt{3}$,BC=$\sqrt{3}$,AC=1,∠ACB=90°,则此球的体积等于( )
| A. | $\frac{40\sqrt{10}}{3}$π | B. | $\frac{64\sqrt{2}}{3}$π | C. | $\frac{8\sqrt{2}}{3}$π | D. | 8π |
2.在△ABC中,点M是BC的中点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AM}$=( )
| A. | $\overrightarrow{a}$+$\overrightarrow{b}$ | B. | $\overrightarrow{a}$-$\overrightarrow{b}$ | C. | $\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$ | D. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$ |
19.设f(x)是R上的偶函数,且在[0,+∞)上是单调递增,若f(2)=0,则使f(log${\;}_{\frac{1}{2}}$x)<0成立的x的取值范围是( )
| A. | ($\frac{\sqrt{2}}{2}$,4) | B. | (0,$\frac{1}{4}$) | C. | ($\frac{1}{4}$,$\frac{\sqrt{2}}{2}$) | D. | ($\frac{1}{4}$,4) |