题目内容
14.已知实数a,b满足0<a<1,-1<b<1,则函数$y=\frac{1}{3}a{x^3}+a{x^2}+b$有三个零点的概率为$\frac{5}{16}$.分析 由函数有极值可得b<a2,由定积分可求满足题意的区域面积,由几何概型的概率公式可得.由函数有极值可得b<a2,由定积分可求满足题意的区域面积,由几何概型的概率公式可得.
解答
解:对y=$\frac{1}{3}$ax3+ax2+b求导数可得y′=ax2+2ax,令ax2+2ax=0,可得x=0,或x=-2,0<a<1,
x=-2是极大值点,x=0是极小值点,函数y=$\frac{1}{3}$ax3+ax2+b
有三个零点,可得$\left\{\begin{array}{l}{f(-2)>0}\\{f(0)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-\frac{8}{3}a+4a+b>0}\\{b<0}\end{array}\right.$,
画出可行域如图:满足函数y=$\frac{1}{3}$ax3+ax2+b有三个零点,如图深色区域,实数a,b满足0<a<1,-1<b<1,为长方形区域,所以长方形的面积为:2,实数区域的面积为:$\frac{1}{2}$×(1+$\frac{1}{4}$)=$\frac{5}{8}$
∴所求概率为P=$\frac{\frac{5}{8}}{2}$=$\frac{5}{16}$,
故答案为:$\frac{5}{16}$.
点评 本题考查几何概型的求解,涉及导数求解函数的极值,函数的零点以及线性规划的应用,属中档题.
练习册系列答案
相关题目
5.
如图,椭圆与双曲线有公共焦点F1,F2,它们在第一象限的交点为A,且AF1⊥AF2
∠AF1F2=30°,则椭圆与双曲线的离心率的之积为( )
∠AF1F2=30°,则椭圆与双曲线的离心率的之积为( )
| A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
9.某路口的红绿灯,红灯时间为30秒,黄灯时间为5秒,绿灯时间为40秒,假设你在任何时间到达该路口是等可能的,则当你到达该路口时,看见不是黄灯的概率是( )
| A. | $\frac{14}{15}$ | B. | $\frac{1}{15}$ | C. | .$\frac{3}{5}$ | D. | $\frac{1}{2}$ |
3.某校对学生的思想品德、学业成绩、社会实践能力进行综合评价,思想品德、学业成绩、社会实践能力评价指数分别记为x,y,z,每项评价指数都为1分、2分、3分、4分、5分五等,综合评价指标S=x+y+z,若S≥13,则该学生为优秀学生.现从该校学生中,随机抽取10名学生作为样本,分为A,B两组,其评价指数列表如下:
A组
B组
(1)从A,B两组中各选一名学生,依次记为甲、乙,求乙的综合评价指标大于甲的综合评价指标的概率;
(2)若该校共有1500名学生,估计该校有多少名优秀学生.
A组
| 学生编号 | A1 | A2 | A3 | A4 | A5 |
| 评价指数(x,y,z) | (3,4,3) | (4,3,4) | (4,4,2) | (4,3,5) | (4,5,4) |
| 学生编号 | B1 | B2 | B3 | B4 | B5 |
| 评价指数(x,y,z) | (3,5,3) | (4,3,2) | (5,4,4) | (5,4,5) | (4,5,3) |
(2)若该校共有1500名学生,估计该校有多少名优秀学生.