题目内容
2.点P在椭圆$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{9}$=1上,点P到直线3x-4y=24的最大距离等于$\frac{12}{5}$(2+$\sqrt{2}$).分析 设点P的坐标为(4cosθ,3sinθ),可得点P到直线3x-4y=24的d的表达式,再根据余弦函数的值域求得它的最值.
解答 解:设点P的坐标为(4cosθ,3sinθ),
则点P到直线3x-4y=24的d=$\frac{丨12cosθ-12sinθ-24丨}{\sqrt{{3}^{2}+(-4)^{2}}}$=$\frac{丨12\sqrt{2}cos(θ+\frac{π}{4})-24丨}{5}$,
由-1≤cos(θ+$\frac{π}{4}$)≤1,
∴当cos(θ+$\frac{π}{4}$)=-1时,d取得最大值为dmax=$\frac{12(2+\sqrt{2})}{5}$,
故答案为:$\frac{12}{5}$(2+$\sqrt{2}$).
点评 本题主要考查椭圆的参数方程,点到直线的距离公式的应用,余弦函数的值域,属于中档题.
练习册系列答案
相关题目
10.直线x+y-2=0与坐标轴围成的三角形的面积为( )
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
17.在2×2列联表中,两个比值相差越大,两个分类变量有关系的可能性就越大,那么这两个比值为( )
| A. | $\frac{a}{a+b}$与$\frac{c}{c+d}$ | B. | $\frac{a}{c+d}$与$\frac{c}{a+b}$ | C. | $\frac{a}{a+d}$与$\frac{c}{b+c}$ | D. | $\frac{a}{b+d}$与$\frac{c}{a+c}$ |