题目内容

已知f(x)是定义域为R的偶函数,当x≥0是,f(x)=x2-2x,则不等式f(x+2)<3的解集是
 
考点:函数奇偶性的性质
专题:压轴题,不等式的解法及应用
分析:由偶函数性质得:f(-x)=f(x),则f(x+2)<3可变为f(|x+2|)<3,代入已知表达式可表示出不等式,先解出|x+2|的范围,再求x范围即可.
解答: 解:因为f(x)为偶函数,所以f(|x+2|)=f(x+2),
则f(x+2)<3可化为f(|x+2|)<3,即|x+2|2-2|x+2|<3,(|x+2|+1)(|x+2|-3)<0,
所以|x+2|<3,解得-5<x<1,
所以不等式f(x+2)<3的解集是(-5,1).
故答案为:(-5,1)
点评:本题考查函数的奇偶性、一元二次不等式的解法,借助偶函数性质把不等式具体化是解决本题的关键
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网