题目内容
已知焦点在
轴上的双曲线
的两条渐近线过坐标原点,且两条渐近线
与以点
为圆心,1为半径的圆相切,又知
的一个焦点与
关于直线
对称.
(1)求双曲线
的方程;
(2)设直线
与双曲线
的左支交于
,
两点,另一直线
经过
及
的中点,求直线
在
轴上的截距
的取值范围.
与以点
对称.
(1)求双曲线
(2)设直线
(1)双曲线C的方程为:
.
(2)
(2)
(1)设双曲线C的渐近线方程为
,然后根据它与圆
相切,圆心到直线的距离等于半径,建立关于k的方程,求出k值,从而得到双曲线的渐近线方程,再根据双曲线的焦点易求,从而可求出双曲线的标准方程.
(2)直线方程与双曲线方程联立消y后得到关于x的一元二次方程,然后根据直线与双曲线左支交于两点,等价于关于x的一元二次方程在
上有两个不等实根,然后转化二次函数根的分布问题来解决
(2)直线方程与双曲线方程联立消y后得到关于x的一元二次方程,然后根据直线与双曲线左支交于两点,等价于关于x的一元二次方程在
练习册系列答案
相关题目