题目内容
16.已知命题p:?x<1,$log{\;}_{\frac{1}{3}}x<0$;命题q:?x0∈R,$x_0^2≥{2^{x_0}}$,则下列命题中为真命题的是( )| A. | p∨q | B. | (¬p)∧(¬q) | C. | p∨(¬q) | D. | p∧q |
分析 命题p:是假命题,例如x≤0时无意义;命题q:是真命题,例如取x0=2时成立.再利用复合命题真假的判定方法即可判断出结论.
解答 解:命题p:?x<1,$log{\;}_{\frac{1}{3}}x<0$,是假命题,例如x≤0时无意义;
命题q:?x0∈R,$x_0^2≥{2^{x_0}}$,是真命题,例如取x0=2时成立.
则下列命题中为真命题的是p∨q.
故选:A.
点评 本题考查了函数的单调性、复合命题真假的判定方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.已知某产品的广告费用x(单位:万元)与销售额y(单位:万元)具有线性关系关系,其统计数据如下表:
由上表可得线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,据此模型预报广告费用为8万元时的销售额是( )
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)•({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$;$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
| x | 3 | 4 | 5 | 6 |
| y | 25 | 30 | 40 | 45 |
附:$\widehat{b}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)•({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$;$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
| A. | 59.5 | B. | 52.5 | C. | 56 | D. | 63.5 |
19.已知集合A={x∈R|0<x≤5},B={x∈R|log2x<2},则(∁AB)∩Z=( )
| A. | {4} | B. | {5} | C. | [4,5] | D. | {4,5} |
11.函数y=(x+1)3当x=-1时( )
| A. | 有极大值 | B. | 有极小值 | ||
| C. | 既无极大值,也无极小值 | D. | 无法判断 |
1.
在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC-A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则$\frac{m}{n}$的取值范围是( )
| A. | (1,$\frac{2\sqrt{3}}{3}$) | B. | ($\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{3}}{3}$) | C. | ($\frac{2\sqrt{3}}{3}$,$\sqrt{3}$) | D. | ($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$) |