题目内容
11.函数y=(x+1)3当x=-1时( )| A. | 有极大值 | B. | 有极小值 | ||
| C. | 既无极大值,也无极小值 | D. | 无法判断 |
分析 利用导数判定函数的单调性,即可得出结论.
解答 解,y′=3(x+1)2≥0恒成立,所以函数在R上单调递增,
所以函数y=(x+1)3既无极大值,也无极小值.
故选:C
点评 本题考查了导数的应用,属于基础题.
练习册系列答案
相关题目
13.下列参数方程中表示直线x+y-2=0的是( )
| A. | $\left\{\begin{array}{l}x=2+t\\ y=1-t\end{array}\right.(t$为参数) | B. | $\left\{\begin{array}{l}x=1-\sqrt{t}\\ y=1+\sqrt{t}\end{array}\right.(t$为参数) | ||
| C. | $\left\{\begin{array}{l}x=3+t\\ y=-1-t\end{array}\right.(t$为参数) | D. | $\left\{\begin{array}{l}x=1-{t^2}\\ y=1+{t^2}\end{array}\right.(t$为参数) |
6.在直三棱柱ABC-A1B1C1中,AB=AC=2,∠BAC=$\frac{π}{3}$,BB1-=3,则侧棱BB1所在直线与平面AB1C1所成的角为( )
| A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
16.已知命题p:?x<1,$log{\;}_{\frac{1}{3}}x<0$;命题q:?x0∈R,$x_0^2≥{2^{x_0}}$,则下列命题中为真命题的是( )
| A. | p∨q | B. | (¬p)∧(¬q) | C. | p∨(¬q) | D. | p∧q |
3.已知数列{an}的前n项和为Sn,点(n,Sn+3)(n∈N*)在函数y=3×2x的图象上,等比数列{bn}满足bn+bn+1=an(n∈N*).其前n项和为Tn,则下列结论正确的是( )
| A. | Sn=2Tn | B. | Tn=2bn+1 | C. | Tn>an | D. | Tn<bn+1 |
1.某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:
(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;
(2)若以抽取样本的频率为概率,现在该校高二理科学生中,从数学及格的学生中随机抽取3人,记X为这3人中物理不及格的人数,从数学不及格学生中随机抽取2人,记Y为这2人中物理不及格的人数,记ξ=|X-Y|,求ξ的分布列及数学期望.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
| 物理及格 | 物理不及格 | 合计 | |
| 数学及格 | 28 | 8 | 36 |
| 数学不及格 | 16 | 20 | 36 |
| 合计 | 44 | 28 | 72 |
(2)若以抽取样本的频率为概率,现在该校高二理科学生中,从数学及格的学生中随机抽取3人,记X为这3人中物理不及格的人数,从数学不及格学生中随机抽取2人,记Y为这2人中物理不及格的人数,记ξ=|X-Y|,求ξ的分布列及数学期望.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
| P(X2≥k) | 0.150 | 0.100 | 0.050 | 0.010 |
| k | 2.072 | 2.706 | 3.841 | 6.635 |