题目内容
12.已知点P是边长为4的正方形内任一点,则点P到四个顶点的距离均大于2的概率是1$-\frac{π}{4}$.分析 根据题意,先求出满足条件的正方形ABCD的面积,再求出满足条件正方形内的点到正方形的顶点A、B、C、D的距离均不小于2的图形的面积,然后代入几何概型公式即可得到答案.
解答
解:满足条件的正方形ABCD如下图所示:
其中正方形的面积S正方形=4×4=16;
满足到正方形的顶点A、B、C、D的距离均不小于2的平面区域如图中阴影部分所示
则S阴影=16-4π,
故该正方形内的点到正方形的顶点A、B、C、D的距离均不小于1的概率是P=$\frac{{S}_{阴影}}{{S}_{正方形}}$=$\frac{16-4π}{16}$=1$-\frac{π}{4}$;
故答案为:1$-\frac{π}{4}$.
点评 本题考查几何概型的计算,解题的关键理解几何概型的意义,即将长度、面积、体积的比值转化为事件发生的概率
练习册系列答案
相关题目
2.若双曲线$\frac{y^2}{8}-\frac{x^2}{4}=1$的其渐近线方程为( )
| A. | y=±2x | B. | $y=±\frac{{\sqrt{2}}}{2}x$ | C. | $y=±\frac{1}{2}x$ | D. | $y=±\sqrt{2}x$ |
20.已知平面向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$\overrightarrow c=x\overrightarrow a+y\overrightarrow b$(x,y∈R),且$\overrightarrow a•\overrightarrow c>0$,$\overrightarrow b•\overrightarrow c>0$.( )
| A. | 若$\overrightarrow a•\overrightarrow b<0$,则x>0,y>0 | B. | 若$\overrightarrow a•\overrightarrow b<0$,则x<0,y<0 | ||
| C. | 若$\overrightarrow a•\overrightarrow b>0$,则x<0,y<0 | D. | 若$\overrightarrow a•\overrightarrow b>0$,则x>0,y>0 |
7.函数f(x)=$\frac{1}{x^2-x}$+$\sqrt{2-x}$的定义域是( )
| A. | (-∞,1)∪(1,2) | B. | (-∞,0)∪(0,1)∪(1,2) | C. | (-∞,0)∪(1,2) | D. | (-∞,0)∪(0,1)∪(1,2] |
4.若实数x,y满足不等式组$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,则2x+y的最大值是( )
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
1.已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集的补集是( )
| A. | (-1,2) | B. | (1,4) | C. | (-∞,-1)∪[4,+∞) | D. | (-∞,-1]∪[2,+∞) |