题目内容
4.分别在区间[0,$\frac{π}{2}$]和[0,1]内任取两个实数x,y,则不等式y≤cosx恒成立的概率为( )| A. | $\frac{1}{π}$ | B. | $\frac{2}{π}$ | C. | $\frac{3}{π}$ | D. | $\frac{1}{2}$ |
分析 根据几何概型的概率公式,求出对应事件对应的平面区域的面积,进行求解即可.
解答
解:由题意知0≤x≤$\frac{π}{2}$,0≤y≤1,
作出对应的图象如图:则此时对应的面积S=$\frac{π}{2}$×1=$\frac{π}{2}$,
阴影部分的面积S=${∫}_{0}^{\frac{π}{2}}$cosxdx=sinx|${\;}_{0}^{\frac{π}{2}}$=sin$\frac{π}{2}$-sin0=1,
则不等式y≤cosx恒成立的概率P=$\frac{1}{\frac{π}{2}}$=$\frac{2}{π}$,
故选:B.
点评 本题主要考查几何概型的概率的计算,根据积分以及线性规划的知识作出对应的图象,求出对应的面积是解决本题的关键.
练习册系列答案
相关题目
14.如表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据.
(1)如y与x具有较好的线性关系,请根据表中提供的数据,求出线性回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)由此推测当婴儿生长到五个月时的体重为多少?
参考公式:$\stackrel{∧}{y}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$;$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=27.5.
| x | 0 | 1 | 2 | 3 |
| y | 3 | 3.5 | 4.5 | 5 |
(2)由此推测当婴儿生长到五个月时的体重为多少?
参考公式:$\stackrel{∧}{y}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$;$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=27.5.
15.已知命题p:2和8的等比中项是4;命题q:平面内到两个定点F1,F2的距离之差等于常数2a(|F1F2|<2a)的点的轨迹是双曲线,则下列命题为真命题的是( )
| A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
12.过点A(0,2)与抛物线C:y2=4x恰有一个交点的直线有( )条.
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
9.下列函数为偶函数的是( )
| A. | f(x)=x | B. | f(x)=x3 | C. | f(x)=x2,x∈(-5,5] | D. | f(x)=4 |
13.已知数列{an}满足a4=23,an+1=2an+1,则a2等于( )
| A. | 5 | B. | $\frac{11}{2}$ | C. | 6 | D. | $\frac{13}{2}$ |
14.不等式$\sqrt{{x}^{2}+4x+5}$+$\sqrt{{x}^{2}-4x+5}$≤2$\sqrt{6}$的解集为( )
| A. | {x|-$\sqrt{2}$≤x≤$\sqrt{2}$} | B. | {x|-$\sqrt{3}$≤x≤$\sqrt{3}$} | C. | {x|-2≤x≤2} | D. | {x|-$\sqrt{5}$≤x≤$\sqrt{5}$} |