题目内容
14.如表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据.| x | 0 | 1 | 2 | 3 |
| y | 3 | 3.5 | 4.5 | 5 |
(2)由此推测当婴儿生长到五个月时的体重为多少?
参考公式:$\stackrel{∧}{y}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$;$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=27.5.
分析 (1)求出x,y的平均数,代入回归系数方程求出回归系数,得出回归方程.
(2)把x=5代入回归方程解出$\stackrel{∧}{y}$.
解答 解:(1)$\overline{x}$=$\frac{0+1+2+3}{4}$=1.5,$\overline{y}$=$\frac{3+3.5+4.5+5}{4}$=4.
$\sum_{i=1}^{4}{{x}_{i}}^{2}$=02+12+22+32=14,
∴$\stackrel{∧}{b}$=$\frac{27.5-4×1.5×4}{14-4×1.{5}^{2}}$=$\frac{7}{10}$,$\stackrel{∧}{a}$=4-$\frac{7}{10}×1.5$=$\frac{59}{20}$.
∴y关于x的线性回归方程为$\stackrel{∧}{y}$=$\frac{7}{10}$x+$\frac{59}{20}$.
(2)当x=5时,$\stackrel{∧}{y}$=$\frac{7}{2}$+$\frac{59}{20}$=6.45.
答:由此推测当婴儿生长满五个月时的体重为6.45公斤.
点评 本题考查了线性回归方程的求解和数值估计,属于基础题.
练习册系列答案
相关题目
5.为了考察两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做100次和150次试验,并且利用线性回归方法,求得回归直线分别为t1和t2,已知两人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是( )
| A. | t1和t2有交点(s,t) | B. | t1与t2相交,但交点不一定是(s,t) | ||
| C. | t1与t2必定平行 | D. | t1与t2必定重合 |
9.下列四个命题,其中m,n,l为直线,α,β为平面
①m?α,n?α,m∥β,n∥β⇒α∥β;
②设l是平面α内任意一条直线,且l∥β⇒α∥β;
③若α∥β,m?α,n?β⇒m∥n;
④若α∥β,m?α⇒m∥β.
其中正确的是( )
①m?α,n?α,m∥β,n∥β⇒α∥β;
②设l是平面α内任意一条直线,且l∥β⇒α∥β;
③若α∥β,m?α,n?β⇒m∥n;
④若α∥β,m?α⇒m∥β.
其中正确的是( )
| A. | ①② | B. | ②③ | C. | ②④ | D. | ①②④ |
19.
为备战“全国高中数学联赛”,我市某高中拟成立两个“数学竞赛班”,经过学校预选,选出40名学生,编成A,B两个班,分别由两位教师担任教练进行培训;经过两个月的培训,参加了市里组织的数学竞赛初赛(只有经过初赛,取得相应名次,才能取得参加省统一组织的“全国高中数学联赛”复赛资格),这40名学生的初赛成绩的茎叶图如图:
市数学会规定:140分以上(含140分)为市级一等奖,135分以上(含135分)为市级二等奖,100分以上(含100分)为市级三等奖.
(1)由茎叶图判断A班和B班的平均分$\overline{{x}_{A}}$,$\overline{{x}_{B}}$的大小(只需写出结论);
(2)按照规则:获得市一等奖、二等奖的同学才能获得省里组织的“全国数学联赛”复赛资格,我们称这些同学为“种子选手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为称为‘种子’选手”与班级有关?
(3)在获市级一等奖的同学中选出3人,求至少含有1名A班同学的概率.
下面临界值表仅供参考:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
市数学会规定:140分以上(含140分)为市级一等奖,135分以上(含135分)为市级二等奖,100分以上(含100分)为市级三等奖.
(1)由茎叶图判断A班和B班的平均分$\overline{{x}_{A}}$,$\overline{{x}_{B}}$的大小(只需写出结论);
(2)按照规则:获得市一等奖、二等奖的同学才能获得省里组织的“全国数学联赛”复赛资格,我们称这些同学为“种子选手”,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为称为‘种子’选手”与班级有关?
| A班 | B班 | 合计 | |
| 种子选手 | |||
| 非种子选手 | |||
| 合计 |
下面临界值表仅供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
6.复数$\frac{5-i}{i-1}$在复平面上所对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
4.分别在区间[0,$\frac{π}{2}$]和[0,1]内任取两个实数x,y,则不等式y≤cosx恒成立的概率为( )
| A. | $\frac{1}{π}$ | B. | $\frac{2}{π}$ | C. | $\frac{3}{π}$ | D. | $\frac{1}{2}$ |