题目内容

14.如表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据.
 x0123
 y33.54.55
(1)如y与x具有较好的线性关系,请根据表中提供的数据,求出线性回归方程:$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)由此推测当婴儿生长到五个月时的体重为多少?
参考公式:$\stackrel{∧}{y}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$;$\sum_{i=1}^{4}{x}_{i}{y}_{i}$=27.5.

分析 (1)求出x,y的平均数,代入回归系数方程求出回归系数,得出回归方程.
(2)把x=5代入回归方程解出$\stackrel{∧}{y}$.

解答 解:(1)$\overline{x}$=$\frac{0+1+2+3}{4}$=1.5,$\overline{y}$=$\frac{3+3.5+4.5+5}{4}$=4.
$\sum_{i=1}^{4}{{x}_{i}}^{2}$=02+12+22+32=14,
∴$\stackrel{∧}{b}$=$\frac{27.5-4×1.5×4}{14-4×1.{5}^{2}}$=$\frac{7}{10}$,$\stackrel{∧}{a}$=4-$\frac{7}{10}×1.5$=$\frac{59}{20}$.
∴y关于x的线性回归方程为$\stackrel{∧}{y}$=$\frac{7}{10}$x+$\frac{59}{20}$.
(2)当x=5时,$\stackrel{∧}{y}$=$\frac{7}{2}$+$\frac{59}{20}$=6.45.
答:由此推测当婴儿生长满五个月时的体重为6.45公斤.

点评 本题考查了线性回归方程的求解和数值估计,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网