题目内容
5.已知数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,2an+1-2an=1,则$\frac{S_n}{a_n}$=$\frac{n+1}{2}$.分析 推导出数列{an}是首项为$\frac{1}{2}$,公差为$\frac{1}{2}$的等差数列,由此利用等差数列通项公式、前n项和公式能求出$\frac{S_n}{a_n}$的值.
解答 解:∵数列{an}的前n项和为Sn,且满足a1=$\frac{1}{2}$,2an+1-2an=1,
∴数列{an}是首项为$\frac{1}{2}$,公差为$\frac{1}{2}$的等差数列,
∴an=$\frac{1}{2}+(n-1)×\frac{1}{2}$=$\frac{1}{2}n$,
Sn=$\frac{1}{2}n+\frac{n(n-1)}{2}×\frac{1}{2}$=$\frac{{n}^{2}+n}{4}$,
$\frac{S_n}{a_n}$=$\frac{\frac{{n}^{2}+n}{4}}{\frac{1}{2}n}$=$\frac{n+1}{2}$.
故答案为:$\frac{n+1}{2}$.
点评 本题考查等差数列的前n项和与通项公式的比值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
15.(1-i)•i=( )
| A. | 1-i | B. | 1+i | C. | 1 | D. | -1 |
16.由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程y=bx+a,那么下列说法中不正确的是( )
| A. | 直线y=bx+a必经过点$(\overline x,\overline y)$ | |
| B. | 直线y=bx+a至少经过(x1,y1),(x2,y2),…,(xn,yn)中的一个点 | |
| C. | 直线y=bx+a的纵截距为$\overline y-b\overline x$ | |
| D. | 直线y=bx+a的斜率为$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$ |
13.用反证法证明命题:“自然数a,b,c中恰有一个是偶数”时,要做的假设是( )
| A. | a,b,c中至少有两个偶数 | |
| B. | a,b,c中至少有两个偶数或都是奇数 | |
| C. | a,b,c都是奇数 | |
| D. | a,b,c都是偶数 |
20.已知等比数列a1+a4=18,a2a3=32,则公比q的值为( )
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{1}{2}$或2 | D. | 1或2 |
14.设c1,c2,…,cn是a1,a2,…,an的某一排列(a1,a2,…,an均为正数),则$\frac{{a}_{1}}{{c}_{1}}$+$\frac{{a}_{2}}{{c}_{2}}$+…+$\frac{{a}_{n}}{{c}_{n}}$的最小值是( )
| A. | 2n | B. | $\frac{1}{n}$ | C. | $\sqrt{n}$ | D. | n |