题目内容
函数y=lg(6+x-x2)的定义域是( )
| A、{x|x<-2,或x>3} |
| B、{x|-2<x<3} |
| C、{x|2<x<3} |
| D、R |
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数成立的条件即可得到结论.
解答:
解:要使函数y有意义,则6+x-x2>0,即x2-x-6<0,
解得-2<x<3,
故函数的定义域为{x|-2<x<3},
故选:B
解得-2<x<3,
故函数的定义域为{x|-2<x<3},
故选:B
点评:本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关题目
已知集合U=R,集合A={x|y=
},则∁UA=( )
1-
|
| A、{x|x<0或x≥1} |
| B、{x|0≤x<1} |
| C、{x|x≥1} |
| D、{x|x<0} |
函数y=tan
x是( )
| 3 |
| 5 |
| A、周期为π的偶函数 | ||
B、周期为
| ||
C、周期为
| ||
| D、周期为π的奇函数 |
下列函数在区间(0,3)内是增函数的是( )
A、y=
| ||
B、y=x
| ||
C、y=(
| ||
D、y=log
|
已知F1,F2是双曲线
-
=1(a>b>0)的两个焦点,点M在双曲线上,若
•
=0,且∠MF1F2=30°,则双曲线的离心率是( )
| x2 |
| a2 |
| y2 |
| b2 |
| MF1 |
| MF2 |
A、
| ||||
B、
| ||||
C、4+2
| ||||
D、
|
函数y=f(x)的图象经过点(2,1),则y=f(x+3)的反函数的图象必过定点( )
| A、(1,2) |
| B、(2,-1) |
| C、(1,-1) |
| D、(2,-2) |