ÌâÄ¿ÄÚÈÝ
ÓÐÈçÏÂÃüÌ⣺ÒÑÖªÍÖÔ²
+
=1£¬AA¡äÊÇÍÖÔ²µÄ³¤ÖᣬP£¨x1£¬y1£©ÊÇÍÖÔ²ÉÏÒìÓÚA£¬A¡äµÄÈÎÒâÒ»µã£¬¹ýP×÷бÂÊΪ-
µÄÖ±Ïßl£¬¹ýÖ±ÏßlÉϵÄÁ½µãM£¬M¡ä·Ö±ð×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪµãA£¬A¡ä£¬Ôò
£¨1£©|AM||A¡äM¡ä|Ϊ¶¨Öµ4£»
£¨2£©ÓÉA£¬A¡ä£¬M¡ä£¬MËĵ㹹³ÉµÄËıßÐÎÃæ»ýµÄ×îСֵΪ12£®
Çë·ÖÎöÉÏÊöÃüÌ⣬²¢¸ù¾ÝÉÏÊöÃüÌâ¶ÔÓÚÍÖÔ²
+
=1£¨a£¾b£¾0£©¹¹Ôì³öÒ»¸ö¾ßÓÐÒ»°ãÐÔ½áÂÛµÄÃüÌ⣬ʹÉÏÊöÃüÌâÊÇÒ»¸öÌØÀý£¬Ð´³öÕâÒ»ÃüÌ⣬²¢Ö¤Ã÷ÕâÒ»ÃüÌâÊÇÕæÃüÌ⣮
| x2 |
| 9 |
| y2 |
| 4 |
| 4x1 |
| 9y1 |
£¨1£©|AM||A¡äM¡ä|Ϊ¶¨Öµ4£»
£¨2£©ÓÉA£¬A¡ä£¬M¡ä£¬MËĵ㹹³ÉµÄËıßÐÎÃæ»ýµÄ×îСֵΪ12£®
Çë·ÖÎöÉÏÊöÃüÌ⣬²¢¸ù¾ÝÉÏÊöÃüÌâ¶ÔÓÚÍÖÔ²
| x2 |
| a2 |
| y2 |
| b2 |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º·ÖÎöÌâÉèÃüÌ⣬¸ù¾ÝÃüÌâ¶ÔÓÚÍÖÔ²
+
=1£¨a£¾b£¾0£©ÐÔÖÊÄܹ¹Ôì³öÒ»¸ö¾ßÓÐÒ»°ãÐÔ½áÂÛµÄÃüÌ⣬ʹÌâÉèÃüÌâÊÇÒ»¸öÌØÀý£¬Ð´³öÕâÒ»ÃüÌâ²¢Ö¤Ã÷£º£¨1£©²»·ÁÉèA£¨-a£¬0£©£¬A¡ä£¨a£¬0£©£¬ÔòÖ±Ïßl£ºy-y1=-
(x-x1)£¬¼´b2x1x+a2y1y=b2x12+a2y12=a2b2£¬ÓÉMÓëA£¬M¡äÓëA¡äÔÚÏàͬµÄºá×ø±ê£¬ÄÜÖ¤Ã÷|AM||A¡äM¡ä|=b2£»£¨2£©ÓÉÌâÒâÖª£¬²»ÂÛËĵãµÄλÖÃÈçºÎ£¬ËıßÐεÄÃæ»ýS=
|AA¡ä|(|AM|+|A¡äM¡ä|)£®ÓÉ´ËÄÜÖ¤Ã÷ËıßÐεÄÃæ»ýµÄ×îСֵΪ2ab£®
| x2 |
| a2 |
| y2 |
| b2 |
| b2x1 |
| a2y1 |
| 1 |
| 2 |
½â´ð£º
½â£ºÕâÒ»ÃüÌâÊÇ£ºÒÑÖª
+
=1£¬a£¾b£¾0£¬AA¡äÊÇÍÖÔ²µÄ³¤ÖᣬP£¨x1£¬y1£©ÊÇÍÖÔ²ÉÏÒìÓÚA£¬A¡äµÄÈÎÒâÒ»µã£¬¹ýP×÷бÂÊΪ-
µÄÖ±Ïßl£¬¹ýÖ±ÏßlÉϵÄÁ½µãM£¬M¡ä·Ö±ð×÷xÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪA£¬A¡ä£¬Ôò£º
£¨1£©|AM||A¡äM¡ä|Ϊ¶¨Öµb2£»
£¨2£©ÓÉA£¬A¡ä£¬M¡ä£¬MËĵ㹹³ÉµÄËıßÐÎÃæ»ýµÄ×îСֵΪ2ab£®£¨6·Ö£©£®
Õâ¸öÃüÌâÊÇÕæÃüÌ⣬֤Ã÷ÈçÏ£º
£¨1£©²»·ÁÉèA£¨-a£¬0£©£¬A¡ä£¨a£¬0£©£¬ÔòÖ±Ïßl£ºy-y1=-
(x-x1)£¬
¼´b2x1x+a2y1y=b2x12+a2y12=a2b2£¬
ÓÉMÓëA£¬M¡äÓëA¡äÔÚÏàͬµÄºá×ø±ê£¬
µÃM£¨-a£¬
£©£¬M¡ä(a£¬
)£¬
¡à|AM||A¡äM¡ä|=|yMyM¡ä|
=|
•
|
=|b2•
|=b2£®£¨10·Ö£©
£¨2£©ÓÉÌâÒâÖª£¬²»ÂÛËĵãµÄλÖÃÈçºÎ£¬
ËıßÐεÄÃæ»ýS=
|AA¡ä|(|AM|+|A¡äM¡ä|)£®
¡ß|AA'|=2a£¬ÇÒ|AM|£¬|A¡äM¡ä|¶¼ÎªÕýÊý£¬
¡àS=
|AA¡ä|(|AM|+|A¡äM¡ä|)=a(|AM|+|A¡äM¡ä|)¡Ýa(2
)=2ab£®
¼´ËıßÐεÄÃæ»ýµÄ×îСֵΪ2ab£®£¨14·Ö£©
| x2 |
| a2 |
| y2 |
| b2 |
| b2x1 |
| a2y1 |
£¨1£©|AM||A¡äM¡ä|Ϊ¶¨Öµb2£»
£¨2£©ÓÉA£¬A¡ä£¬M¡ä£¬MËĵ㹹³ÉµÄËıßÐÎÃæ»ýµÄ×îСֵΪ2ab£®£¨6·Ö£©£®
Õâ¸öÃüÌâÊÇÕæÃüÌ⣬֤Ã÷ÈçÏ£º
£¨1£©²»·ÁÉèA£¨-a£¬0£©£¬A¡ä£¨a£¬0£©£¬ÔòÖ±Ïßl£ºy-y1=-
| b2x1 |
| a2y1 |
¼´b2x1x+a2y1y=b2x12+a2y12=a2b2£¬
ÓÉMÓëA£¬M¡äÓëA¡äÔÚÏàͬµÄºá×ø±ê£¬
µÃM£¨-a£¬
| ab2+b2x1 |
| ay1 |
| ab2-b2x1 |
| ay1 |
¡à|AM||A¡äM¡ä|=|yMyM¡ä|
=|
| ab2+b2x1 |
| ay1 |
| ab2-b2x1 |
| ay1 |
=|b2•
| a2b2-b2x12 |
| a2y12 |
£¨2£©ÓÉÌâÒâÖª£¬²»ÂÛËĵãµÄλÖÃÈçºÎ£¬
ËıßÐεÄÃæ»ýS=
| 1 |
| 2 |
¡ß|AA'|=2a£¬ÇÒ|AM|£¬|A¡äM¡ä|¶¼ÎªÕýÊý£¬
¡àS=
| 1 |
| 2 |
| |AM||A¡äM¡ä| |
¼´ËıßÐεÄÃæ»ýµÄ×îСֵΪ2ab£®£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÃüÌâµÄÐðÊöÓëÖ¤Ã÷£¬¿¼²éÍÖÔ²µÄÐÔÖÊ¡¢Ö±ÏßÓëÔ²×¶ÇúÏߵĹØÏµ¡¢¿¼²éº¯ÊýÓë·½³Ì˼Ïë¡¢¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦µÄÅàÑø£¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Éèx1£¬x2¡ÊR£¬³£Êýa£¾0£¬¶¨ÒåÔËËã¡°*¡±Îª£ºx1*x2=4x1x2£¬µÈºÅÓÒ±ßÊÇͨ³£µÄ³Ë·¨ÔËË㣬Èç¹ûÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶¯µãPµÄ×ø±ê£¨x£¬y£©Âú×ã¹ØÏµÊ½£º
*
=a*x£¬Ôò¶¯µãPµÄ¹ì¼£·½³ÌΪ£¨¡¡¡¡£©
| y |
| 2 |
| y |
| 2 |
A¡¢y2=
| ||
| B¡¢y2=ax | ||
| C¡¢y2=2ax | ||
| D¡¢y2=4ax |
º¯Êýf£¨x£©=
ln
µÄͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
| 1 |
| 3 |
| 1+x |
| 1-x |
| A¡¢ |
| B¡¢ |
| C¡¢ |
| D¡¢ |