题目内容

6.已知$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,则向量$\overrightarrow a,\overrightarrow b$夹角的余弦值为$\frac{2}{3}$.

分析 设向量$\overrightarrow a,\overrightarrow b$夹角为θ,则由题意可得4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=16-4•2•3•cosθ+9=9,计算求得cosθ的值.

解答 解:∵$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,设向量$\overrightarrow a,\overrightarrow b$夹角为θ,
则4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=16-4•2•3•cosθ+9=9,求得cosθ=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网