题目内容
6.已知$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,则向量$\overrightarrow a,\overrightarrow b$夹角的余弦值为$\frac{2}{3}$.分析 设向量$\overrightarrow a,\overrightarrow b$夹角为θ,则由题意可得4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=16-4•2•3•cosθ+9=9,计算求得cosθ的值.
解答 解:∵$|\overrightarrow a|=2$,$|\overrightarrow b|=3$,$|2\overrightarrow a-\overrightarrow b|=3$,设向量$\overrightarrow a,\overrightarrow b$夹角为θ,
则4${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=16-4•2•3•cosθ+9=9,求得cosθ=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.
点评 本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.
练习册系列答案
相关题目
16.下列函数中,在(0,2)上为增函数的是( )
| A. | y=-3x+2 | B. | y=$\frac{3}{x}$ | C. | y=x2-4x+5 | D. | y=3x2+8x-10 |
18.(1)等比数列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$,求公比q的值.
(2)已知数列{an}中,${S_n}={n^2}$,求数列{an}通项公式.
(2)已知数列{an}中,${S_n}={n^2}$,求数列{an}通项公式.
11.已知集合M={x|(x+1)(x-4)<0},N={x|x|<3}则M∩N=( )
| A. | (-3,-1) | B. | (-1,3) | C. | (3,4) | D. | (-1,4) |
12.直线x•(2t-1)-y(2t+1)+1=0(t∈R)的倾斜角为α,则α的范围是( )
| A. | 0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α≤π | B. | $\frac{π}{4}$≤α≤$\frac{3π}{4}$且α≠$\frac{π}{2}$ | C. | 0≤α<$\frac{π}{4}$或$\frac{3π}{4}$<α<π | D. | 0≤α<$\frac{π}{4}$ |