题目内容

在极坐标系中,圆ρ=4cosθ的垂直于极轴的两条切线方程分别为(  )
A、θ=0(ρ∈R)和ρcosθ=4
B、θ=
π
2
(ρ∈R)和ρcosθ=4
C、θ=0(ρ∈R)和ρcosθ=2
D、θ=
π
2
(ρ∈R)和ρcosθ=2
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把圆的极坐标方程化为直角坐标方程,求出它的两条垂直于极轴的切线方程,再化为极坐标方程.
解答: 解:圆ρ=4cosθ即 ρ2=4ρcosθ,化为直角坐标方程为 (x-2)2+y2=4,
表示以(2,0)为圆心、半径等于2的圆,由此可得垂直于极轴的两条切线方程分别为x=0、x=4,
再化为极坐标方程为 θ=
π
2
(ρ∈R)和ρcosθ=4,
故选:B.
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,把直角坐标方程化为极坐标方程的方法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网