题目内容
8.在数列{an}中,an=(2n-1)3n,a1=3,求数列的前n项和.分析 直接利用错位相减法求得答案.
解答 解:由an=(2n-1)3n,得
数列的前n项和${S}_{n}=1•3+3•{3}^{2}+…+(2n-1)•{3}^{n}$,
∴$3{S}_{n}=1•{3}^{2}+3•{3}^{3}+…+(2n-3)•{3}^{n}+(2n-1)•{3}^{n+1}$,
两式作差得:$-2{S}_{n}=1•3+2({3}^{2}+{3}^{3}+…+{3}^{n})-(2n-1)•{3}^{n+1}$
=$3+2\frac{9(1-{3}^{n-1})}{1-3}-(2n-1)•{3}^{n+1}$=-2(n-1)•3n+1-6.
∴${S}_{n}=(n-1)•{3}^{n+1}+3$.
点评 本题考查数列的求和,训练了错位相减法,是中档题.
练习册系列答案
相关题目
18.函数y=sinx+tanx,x∈[-$\frac{π}{4}$,$\frac{π}{4}$]的值域是( )
| A. | [-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$] | B. | [-2,2] | C. | [-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$] | D. | [-$\frac{\sqrt{2}}{2}$-1,$\frac{\sqrt{2}}{2}$+1] |
3.已知函数f(x)=3sin($\frac{π}{4}$-ωx)(ω>0),定义域是[0,π],f(x)相邻两个零点之差的绝对值为$\frac{π}{2}$,则函数f(x)的单调递减区间是( )
| A. | [0,$\frac{3π}{8}$] | B. | [$\frac{3π}{8}$,$\frac{7π}{8}$] | C. | [0,$\frac{3π}{8}$]和[$\frac{7π}{8}$,π] | D. | [$\frac{7π}{8}$,π] |
13.已知数列{an}满足an>1,过点(an,0)的直线ln与圆x2+y2=1在第一象限相切于点Pn,若记Pn的横坐标为bn,则$\frac{{a}_{1}{b}_{1}+{a}_{2}{b}_{2}+..+{a}_{n}{b}_{n}}{({a}_{1}{a}_{2}…{a}_{n})({b}_{1}{b}_{2}…{b}_{n})}$等于( )
| A. | 2-21-n | B. | 2n-1 | C. | 1 | D. | n |
3.若a=30.5,b=logπ3,c=log30.5,则( )
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |